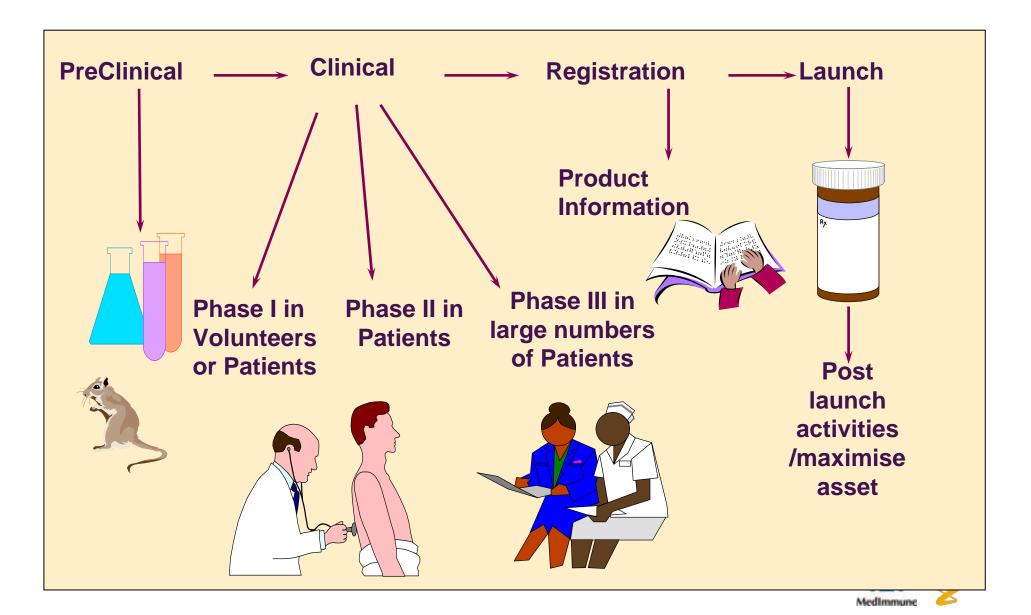
Delivering the Best Formulation to the Right Patient

George Kirk, 16th May 2012

Introduction



Introduction

- Dr George Kirk:
 - Current role: Global Project Manager in Oncology;
 - 15 years in AstraZeneca;
 - 10 years in Pharmaceutical Development;
 - 2 years as Pharmaceutical Development Project Manager;
 - 2 years as a Lean Sigma Black Belt;
 - PhD in Organometallic Synthetic Chemistry;
 - Scottish (and proud!)

Introduction: Phases of Development

Introduction: Principles of Drug Development

Why is Formulation so Important?

- Personalised medicines are becoming more important, particularly in Oncology;
- Targeted therapies are becoming more commonplace and are of increased interest to Payers and Regulators;
- Understanding how a drug is delivered to a patient and how it gets to its target is critical;
- Choosing the right dose is still a challenge;
- Targeted formulations can increase the chances of success of hitting the right target

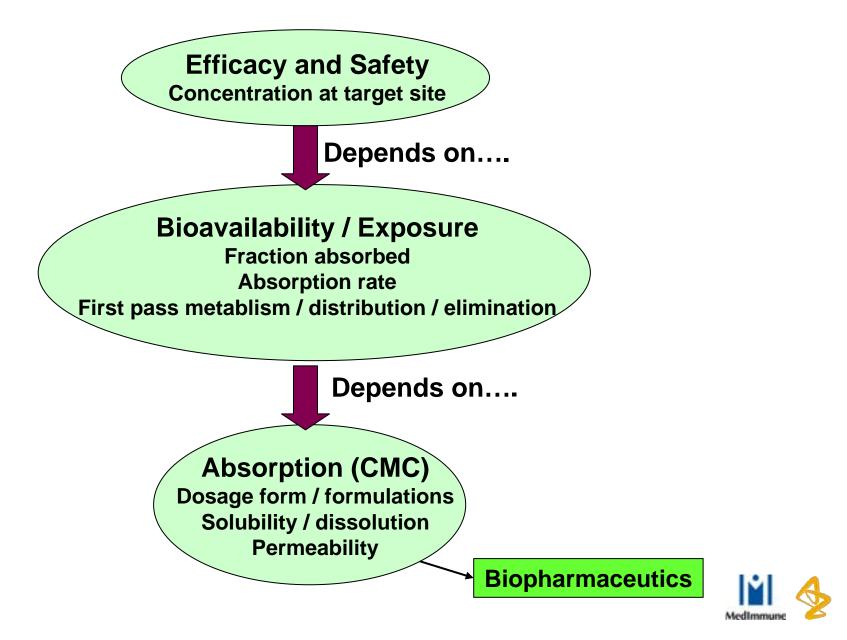
Routes of Administration

ninistration	Via oral route – most common	
Region	▲ Dosage Form	
Stomach Intestine Rectum	<pre>}solution, suspension, }tablet, capsule suppository, enema.</pre>	
Mouth Nose	lozenge, solution, powder, aerosol	
Most areas	solution, lotion, cream, ointment, transdermal devices.	
	inhaler, aerosol	
	pessary, cream	
	drops, cream, inserts	
Intravenous Intramuscular Intraperitoneal Intrathecal Intraarticular Subcutaneous	solution, emulsion } } solution, suspension, } emulsion and biodegradable } depots.	
	Region Stomach Intestine Rectum Mouth Nose Most areas Most areas	

Example – Intra-Articular Delivery

Current intra-articular clinical practice

- Previously accurate delivery to the intra-articular space 10-20% of injections are not correctly placed
- Improvements with ultrasonic guidance and outpatient techniques such as "back-flow" claim virtually 100% correct IA placement

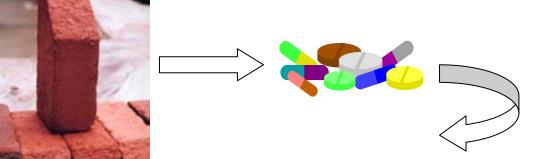

(Jones et al., 1993, Bliddall 1999, Jackson, 2002, Luc et al., 2006)

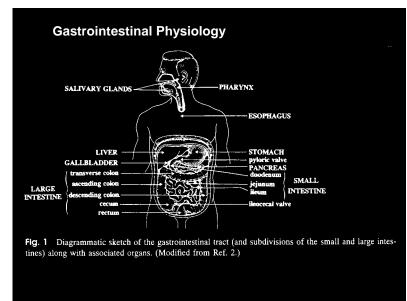
Biopharmaceutical Risk

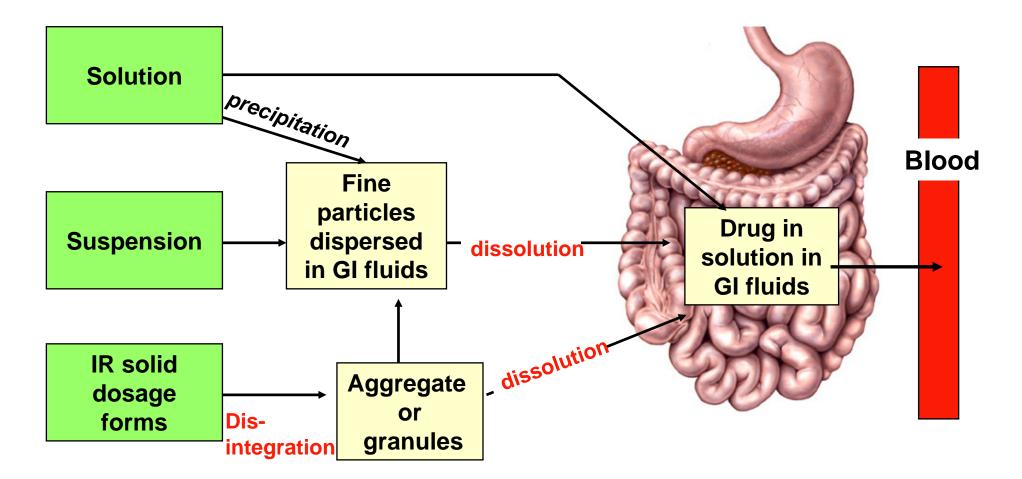
Biopharmaceutics versus drug in vivo performance

First a slight aside – time for you to work!

• Let's think about solubility and dissolution?




- What's this building?
- Taj Mahal is an integrated symmetric complex of structures that was completed around 1648
- What's it made of?
- While the white <u>domed marble</u> and tile mausoleum is most familiar
- What is the solubility of marble (calcium carbonate)?
- 47 mcg/mL (normalised 100 mcM) at normal atmospheric CO₂ partial pressure, pH 8.3.
- At pH 5.3 >1 mg /mL


Why is Solubility so Important in Pharmaceutical Development?

Formulations for PO administration

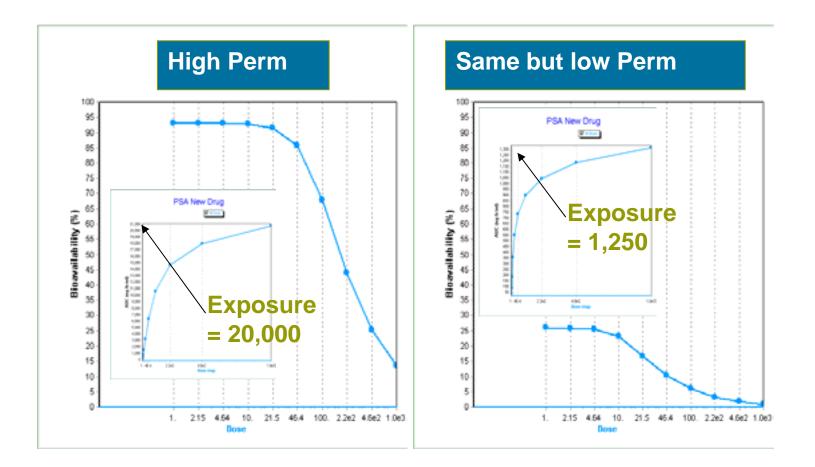
Best if compound dependent inherent dissolution properties not the limiting factor

Physiological aspects on solubility - pH

pH affects solubility of compounds with ionizing groups.

Site		Fasted pH	Fed pH
Stomach		1.4 – 2.1	4.3 – 5.4
Small intestine	duodenum jejunum ileum	4.9 - 6.4 4.4 - 6.6 6.5 - 7.4	4.2 - 6.1 5.2 - 6.2 6.8 - 7.5
Large intestine	caecum colon (upper) colon (lower)	6.4 6.0 7.5	

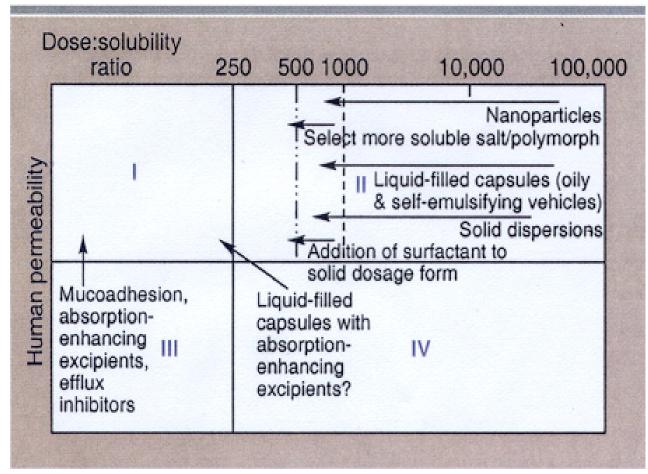
From: Dressman and Hörter (2001). Adv. Drug Del. Rev 46, 75-87


So insufficient solubility may mean:

- Insufficient exposure in preclinical species to support safety margins;
- Insufficient exposure in FTiM to confirm good margin in controlled environment;
- Conventional technology not appropriate for commercial product

Effect of permeability

 No fix for permeability: affects exposure/bioavailability and linearity at high dose



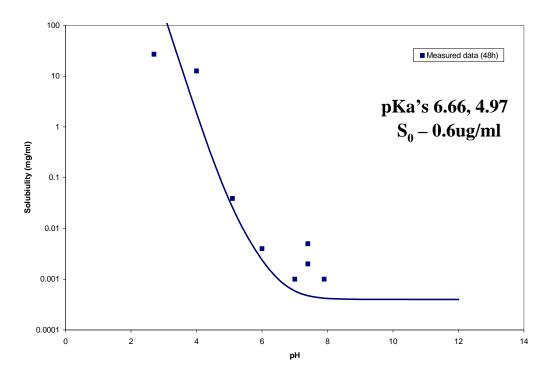
So insufficient permeability may mean:

- Insufficient exposure;
- High cost of goods (due to low fraction absorbed);
- No formulation fix available;
- Controlled release not an option

By understanding biopharm can understand what formulation approach is appropriate for FTiM, preclinical and commercial

Dressman et al. (2001) Pharm Tech. July: 68.

Improving Solubility



Improving Solubility - Salts

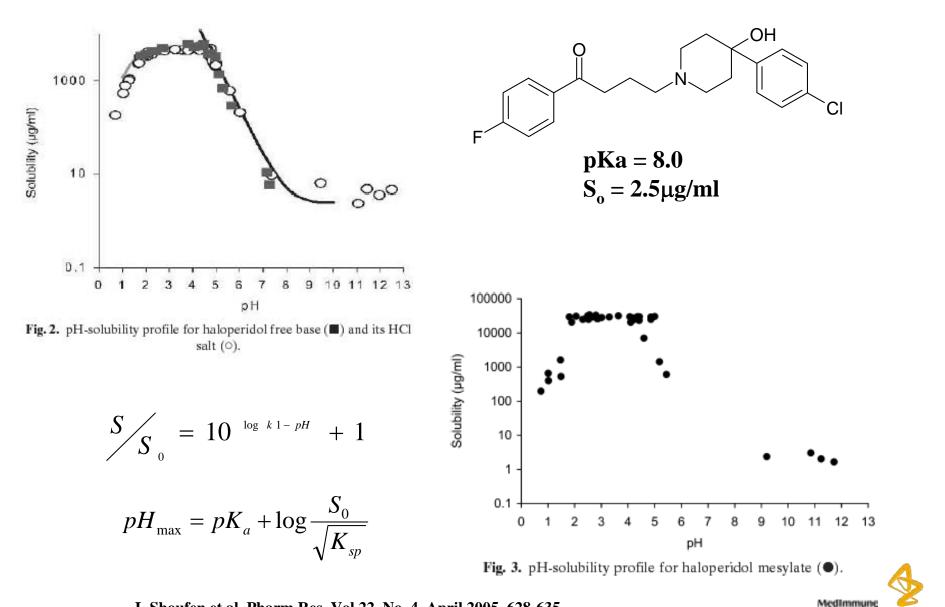
- High biopharmaceutical Risk:
 - Salt Selection applied to compounds with high biopharmaceutical risk from a dissolution rate limited exposure perspective;
- Salt selection methodology:
 - 2 pKa rule:
 - pKa of acid must be two units or greater below that of the pKa for the base
 - pKa of base must be two units or greater above that of the pKa for the acid
- Intrinsic solubility (S₀):
 - has a bearing on what salts can form in an aqueous system;
 - The lower the intrinsic solubility, the lower the pHmax, the stronger the acid required to form stable salts;
- Aim of salts:
 - To predict or show improved exposure from salt form dosed at a relevant clinical dose in in vitro and/or in vivo models

Predicted and Measured pH Solubility Profile of a Weakly Basic Drug

>Intrinsic Solubility:

•Defined as the solubility of the unionised or neutral form;

•Can be useful to measure accurately in order to give good predictions of pH solubility profile;


•ls not independent of crystalline form;

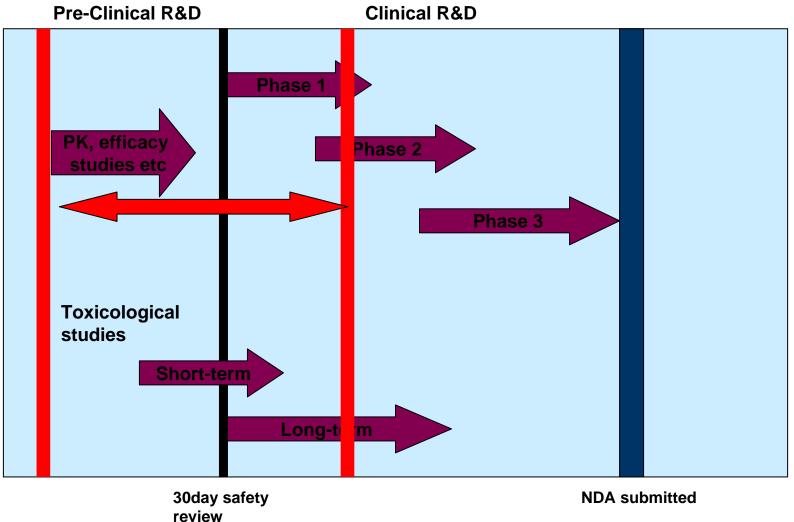
•For a weak base with a ionisation constants k1 and k2 solubility (S) at a given pH is given by the following equation:

$$S_{S_o} = 10^{\log k 1 + \log k 2 - 2 pH} + 10^{\log k 1 - pH} + 10^{\log k 1 - pH}$$

Salt Selection - Haloperidol Example

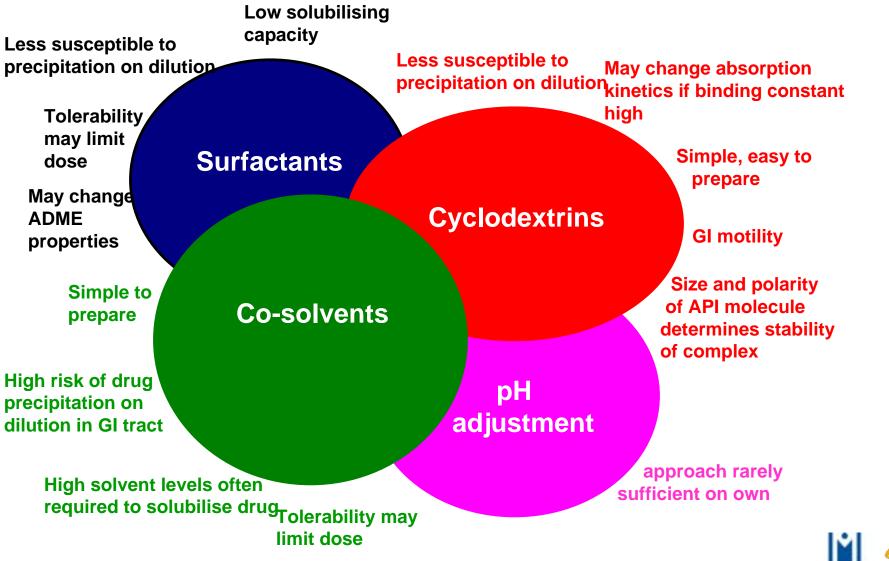
L Shoufen et al, Pharm Res, Vol 22, No. 4, April 2005, 628-635

Formulation Development



Overview

- Increasing numbers of poorly soluble compounds in industry
- Growing need for enabling technologies
- Need to move rapidly to get into clinic at earliest opportunity
 - Know if drug has potential to be a product
- Challenge is to integrate development of these potentially complex technologies, without delaying the overall drug development program


Early Formulation - which studies and when?

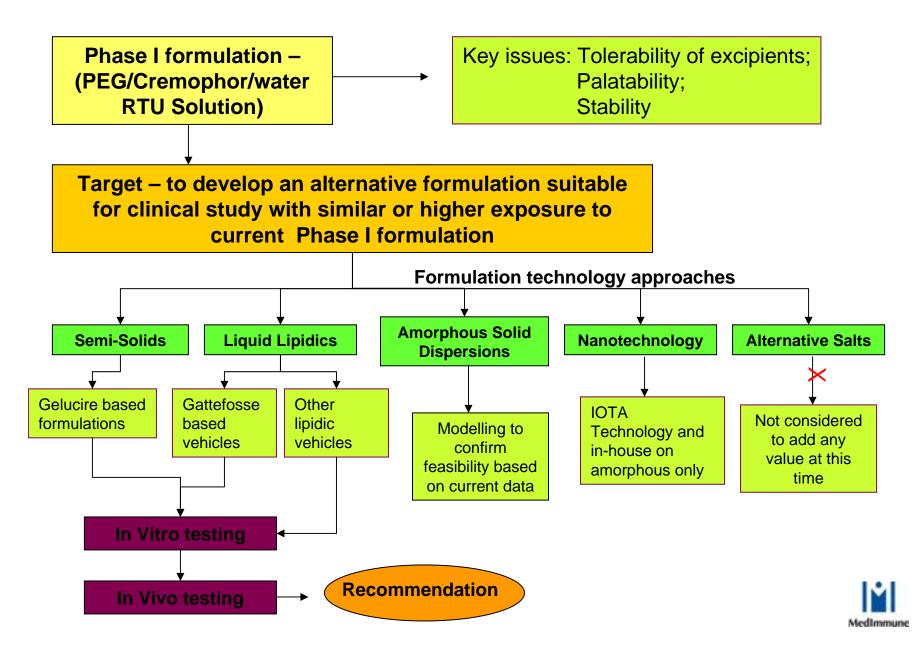
Adapted from FDA CDER Handbook – New Drug Development and Review

Solution formulation options

Drug Delivery technologies

- Solid dispersions
- Lipid-based drug delivery systems (LB-DDS) Lipidics
- Crystalline nanosuspensions/nanoparticles
- Amorphous nanosuspensions

Lipid-based drug delivery systems (LB-DDS)


- Liquid or semi-solid lipidic formulations
- Dosed as a liquid, pre-dispersed in aqueous media or as a capsule/tablet
- Lipid Formulation Classification System proposed by Colin Pouton

Formulation type	Materials	Characteristics
Туре І	Oils without surfactants (e.g. tri-, di-and monoglycerides)	Non-dispersing, requires digestion
Туре II	Oils and water-insoluble surfactants	SEDDS formed without water- soluble components
Type III a/b	Oils, surfactants, cosolvents (both water- insoluble and water-soluble excipients)	SEDDS/SMEDDS formed with water-soluble components
Type IV	Water-soluble surfactants and cosolvents (no oils)	Formulation disperses typically to form a micellar solution

- SEDDS = Self emulsifying drug delivery systems, SMEDDS = Self microemulsifying drug delivery systems. Both disperse under gentle agitation in gut
- Adapted from Pouton C.W. and Porter, C. J. H., (2007) Adv Drug Del Rev, 60(6) 625-637

Formulation Feasibility Case Study

Summary

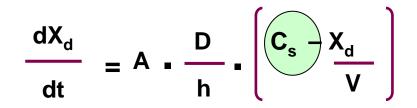
- Multiple formulation options exist for early formulation development of poorly solubles
 - Clinically and preclinically
- Decision of which technology to apply based on many factors
 - Theoretical assessments combined with screening
 - Provide recommendation on way forward and associated risks/opportunities
- No one technology suitable for all API's

Summary

"Novel observations in Research constitute Discoveries, novel observations in late Development constitute Disasters, Pharmaceutical Development includes those elements of research that may limit Development Disasters"

Back ups

Biopharmaceutics Classification System


- Defines drugs based on solubility (dose in <250mL pH 1 to 7.5) and permeability (fa >90%).
- Class 1: high solubility and high permeability.
- Class 2: low solubility and high permeability.
- Class 3: high solubility and low permeability.
- Class 4: low solubility and low permeability.

A regulatory guidance that allows us to avoid some clinical studies

Dissolution and Solubility

Modified Noyes-Whitney Equation:

Factor

Surface area (A)

Diffusivity of drug (**D**)

Solubility (Cs)

Physicochemical parameter Particle size Wettability

Molecular size,

Hydrophilicity Crystal structure

Amount of already dissolved drug (**Xd**)

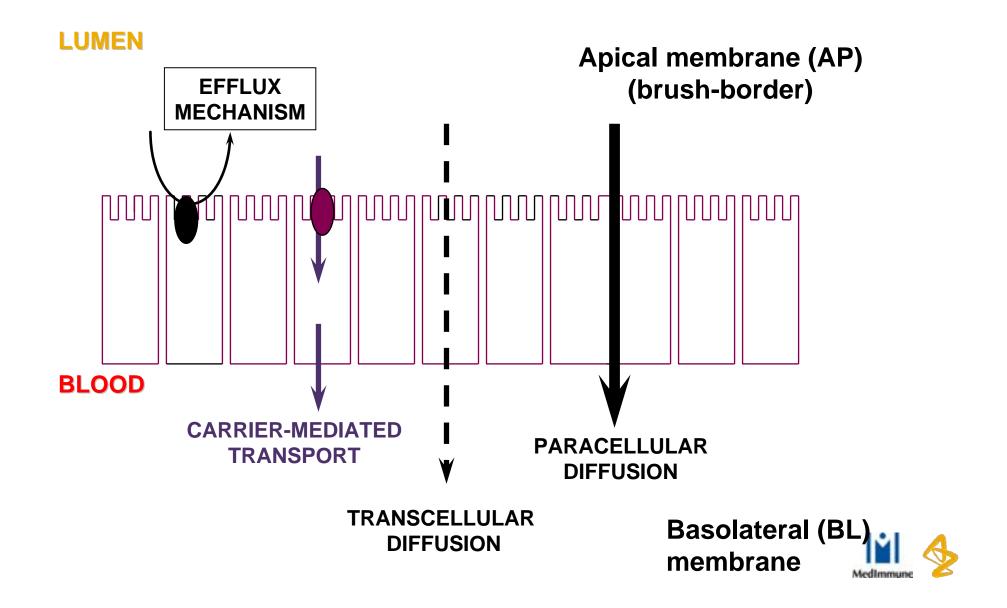
Volume of solvent availble (V)

Physiological parameter

Gastric surfactants SI bile salts

Viscosity of luminal contents, 'bile' micelle size

Motility pattern and flow rate


pH, buffer capacity, bile, food components

Permeability

Secretions, Co-administered fluids

Permeability: Transport Pathways across intestinal epithelial cells

Lipid-based drug delivery systems (LB-DDS)

Solid dosage form manufacturing methods include

- Liquid or semi-solid filled capsules
- Conversion to solid particles for filling into capsules, sachets, compression to tablets via
 - melt granulation, melt pelletisation or spray congealing of semi-solids
 - Adsorption onto inert matrices (liquid or semi-solid lipidics)
- Complex in vivo behaviour
- Bioavailability may be enhanced via *
 - Maintaining drug in solution/solubilising drug along GI tract
 - Alteration of composition of intestinal fluids
 - Activation of Lipid digestion
 - Inhibition of efflux/CYP enzymes
 - Protection from chemical/enzymatic degradation in GI tract
 - Alteration of gut permeability
 - Promotion of lymphatic uptake (compounds with logP>5, oil solubility >50mg.ml)

^{*} O'Driscoll, C.M. and Griffin, B.T (2008) Adv. Drug. Del. Rev. 60(6) 617-624

Lipid-based drug delivery systems (LB-DDS)

- API criteria
 - Log P>2, (log P >4 for oily vehicles)*
 - Log P >5 may be absorbed through lymphatic pathway
 - Increased drug bioavailability in fed state
- Key issues
 - Predicting in vivo performance from in vitro data
 - Regulatory and Safety status of lipidic excipients
 - High surfactant levels in type IIIa/b and IV lipidics
 - Characterisation of semi-solid lipidics
 - Batch to batch variability in excipients

* Pouton C.W (2000) Eur J. Pharm. Sci., 11(2) S93-S98

Solid dispersions

- Dispersion of API in polymer matrix (Shanbhag et al *)
 - molecularly dispersed drug
 - multiparticulate dispersed drug
 - crystalline or amorphous drug as domains
- Commonly used polymers types include PVP, PEG & HPMC
- Bioavailability enhanced by
 - increasing dissolution rate
 - increasing solubility in GI tract (supersaturated)
 - prevention of subsequent drug precipitation
- Manufacturing methods include:
 - evaporation-based methods ie drug/polymer dissolved in organic solvent which is subsequently removed by spray drying, vacuum/heat driven methods
 - hot melt methods ie mixing of molten drug/polymer or drug dissolves in molten polymer eg melt extrusion, hot-melt encapsulation
- Solid dosage form or pre-disperse in aqueous media for early studies

Solid dispersions

- General API properties
 - Solvent solubility (spray drying)
 - High temperature stability (melt extrusion)
- Key issues
 - Physical and chemical instability of drug/formulation
 - Residual solvents
 - Hygroscopicity (excipients may be hygroscopic and water uptake may potentiate recrystallisation where drug is amorphous)
 - Analytically more challenging to characterise

Crystalline Nanosuspensions

- Crystalline drug nanoparticles stabilised with surfactants/polymers *
- Prepared by number of techniques eg wet milling, high pressure homogenisation, microfluidisation
- Bioavailability enhanced by increasing drug dissolution rate due to high surface area
- Potential for high drug:excipient ratio
 - less risk of excipient tolerability limiting dose
- Viscosity may limit concentration achievable and hence dose

Crystalline Nanosuspensions

- API properties */**
 - Dissolution-rate limited bioavailability
 - Free form and most stable form preferred
 - Low solubility reduces Ostwald ripening
 - More likely to succeed with low aqueous solubility and high melting point API's than other technologies eg lipidics
- Key issues
 - Physical instability
 - Agglomeration overcome by electrostatic repulsion or steric stabilisation
 - Potentially long processing times (milling)

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 15 Stanhope Gate, W1K 1LN, London, UK, Tel: +44(0)20 7304 5000, Fax: +44 (0)20 7304 5151, www.astrazeneca.com

