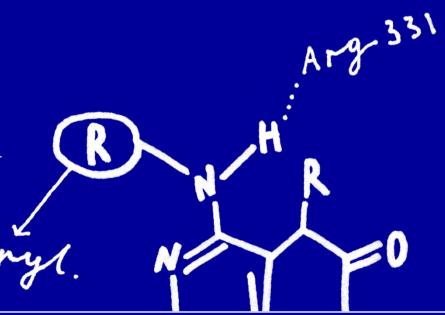
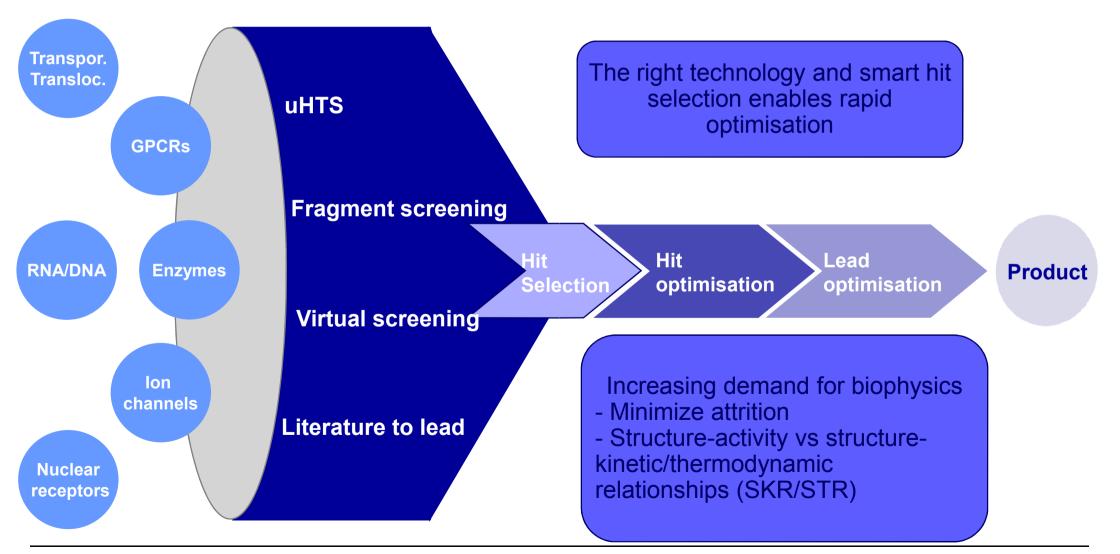


'RESEARCH NEVER STOPS'


Building innovative drug discovery alliances

Biophysical techniques for measuring kinetic and thermodynamics of binding

SCI HQ, London, UK 6 November 2012,



Selecting the right technology and approach for each individual target

Hit identification platform

Why Biophysics

Increase the quality of hits and leads in drug discovery

- Better understanding the mechanism of binding and activity
- Advance hits earlier and more efficiently
 - Identify and discard unwanted and promiscuous compounds early
 - Confirm and characterize weak hits, difficult hit series and singletons
 - Enable proper follow up for all hits
 - Prioritization of hits for expensive follow up (NMR, Xray)
 - Bona fide hits for MedChem optimization

Better selection of hits for: Disease biology, Structural biology,CADD and MedChem

- Most biophysical methods are complex, costly, resource intensive and do not provide HT
- Biophysical methods are complementary technologies and need to be well positioned in the workflow

Biophysical Technology Toolbox

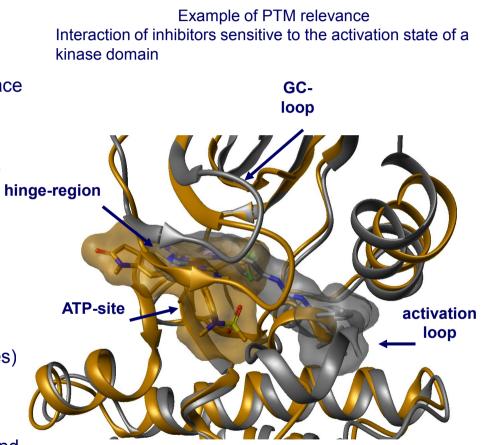
Kinet/Therm

In use / under consideration at Evotec

TECHNOLOGY	TYPE OF INFORMATION
Biochemical binding assasy (FCS+plus, Reporter Displacement)	Yes/No Binding, Kd, Ki, <mark>kon/koff, ∆H,</mark> ∆S
Surface Plasmon Resonance (SPR) and related technologies (switchSENSE, MolSense, Biolayer Interfer.)	Yes/No Binding, stochiometry, Kd, Ki, kon/koff, (Δ H, Δ S)
Mass spectrometry (LC-MS) and HT MS (RapidFire), HX- MS, MS-based Proteomics	Yes/No Binding, Kd, Activity, Protein Dynamics, PTM, Pathways
Nuclear-magnetic resonance (NMR)	Yes/No Binding, Kd, allosteric sites
Isothermal Titration Calorimetry (ITC)	Stochiometry, ∆H, ∆S
Differential Scanning Fluorimetry (DSF)	Protein (de)stabilization, Tm
Dynamic Light Scattering (DLS)	Cpd Aggregation, Solubility
Fragment Molecular Orbital Calculations (FMO)	Electrostatic Interactions, AH

Requirements on Protein Quality

Proteins for Biophysics


- Procedures to identify the suitable constructs
 - Rational design on published precedence or obvious analogies / homologies, Construct library screening
 - Variation of species: elucidation of sequence conservation for surface mutants
 - Limited proteolysis to identify compactly folded domains
- Methods to express the recombinant proteins / isolate native proteins
 - Suitable expression systems / hosts; native sources
 - Timeframe from construct => expression feasibility => upscale

Quantity

- Largest consumption in Xray (>5mg) and Calorimetry (>5mg), low for Biacore (<1mg)
- Ranges from 1mg to 30 mg per production slot (also pooled batches)
- Several protein variants may be required in parallel

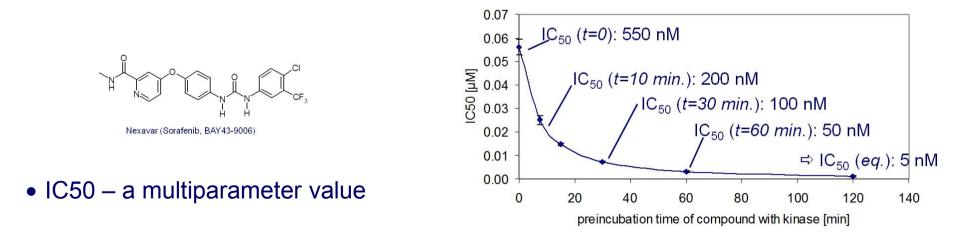
Quality

- General protein analytics to confirm identity (e.g. mass, EDMAN) and purity (special: disulfide linkage after refolding)
- Biochemical behavior with respect to stability (e.g. TSA buffer screen), aggregation/dispersity or app. molecular weight on SEC
- Xtalisability, Functionality (activity or binding), PTMs

type II inhibitors sensitive to phosphorylation state

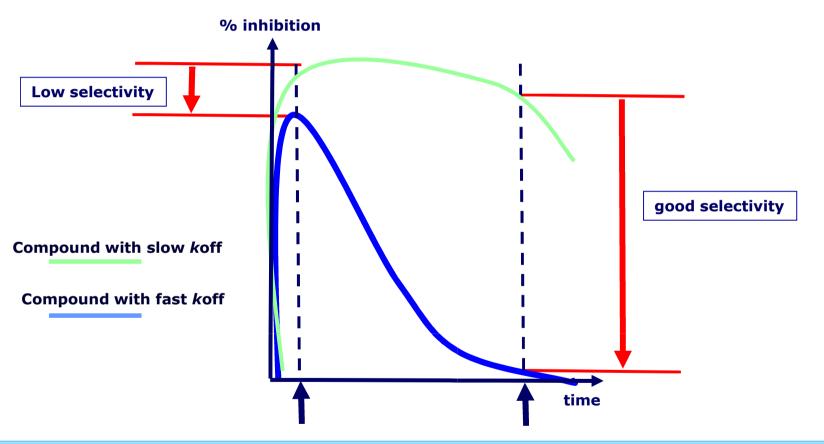
Hit Discovery by biophysical methods

Typical project workflow


Assay development phase to establish assay conditions and optimise sample and experiment conditions	Biochemical binding assay, SPR, NMR, HT-MS
 Clean screen to remove not well behaving cpds (e.g. insoluble, slow off, matrix binders, hyper-stoichiometric binders) 	SPR, DLS, NMR, ITC
 Primary screening (<i>Binding level screen</i>) Prioritization of hits for profiling, statistical hit identification based on normalized binding response 	Biochemical binding assay, SPR, NMR, HT-MS
 Profiling (Affinity screen) Ranking of hits wrt affinity, selectivity based on steady state binding response plots 	Biochemical binding assay, Activity Assays, LC-MS, SPR, NMR, MS- Proteomics
 Analysis of SAR, tractability of hit compounds Hit validation in competition and orthogonal assays Hit expansion 	Xray, FMO, DSF, Biochemical binding assay, Activity, SPR, NMR, LC-MS, MS- Proteomics

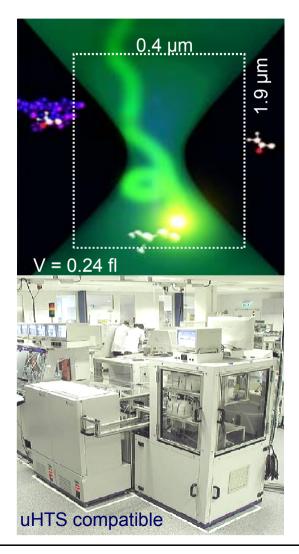
Residence time in Drug Discovery

Drive cpd optimization by *in vitro* measurement of K_d and k_{off}


- Critical factor for drug efficacy in vivo is not apparent affinity, but rather "residence time"
- "Residence time" = binary complex residence time = period for which receptor (R) is occupied by ligand (L)
- *In vivo:* compound-target interaction time is dependent and influenced by other determinants rather than compound-target molecular interaction
- **residence time** directly measured by dissociation half-life of compound-target complex $(t_{1/2}=\ln 2/k_{off})$

Residence time determines selectivity

Demand for kinetic selectivity panels



In vivo Selectivity can be gained through residence time and is best predicted through kinetic selectivity panels

FCS+plus provides multiple read-out options

The target selects the optimal read-out for binding and activity assays

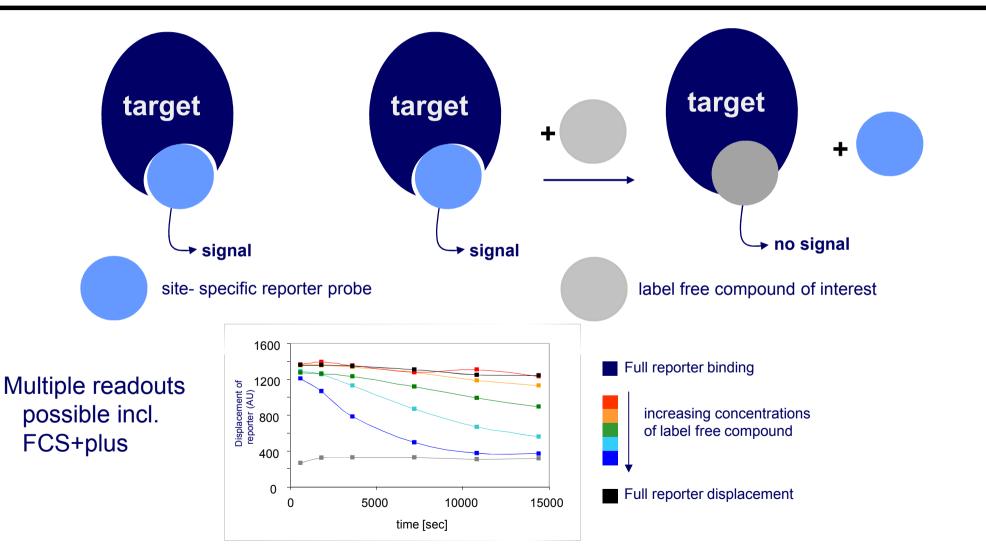
Portfolio of read-out options for FBDD

- Translational diffusion / FCS
- Rotational diffusion / FP
- Fluorescence lifetime / FL
- Fluorescence intensity / Fl
- Molecular particle brightness / FIDA

Fluorescence-intensity distribution analysis and its application in biomolecular detection technology

Peet Kask*[†], Kaupo Palo*, Dirk Ullmann*, and Karsten Gall*[‡]

*EVOTEC BioSystems AG, Schnackenburgallee 114, D-22525 Hamburg, Germany; and [†]Institute of Experimental Biology, Instituudi tee 11, EE3051 Harku, Estonia

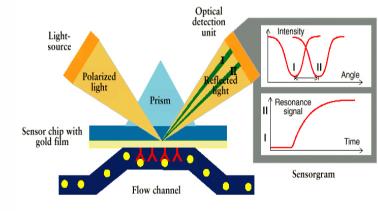

Communicated by Manfred Eigen, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, October 4, 1999 (received for review February 16, 1999)

A methodology, fluorescence-intensity distribution analysis, has been developed for confocal microscopy studies in which the fluorescence intensity of a sample with a heterogeneous brightphoton count number distributions. An appropriate theory and realization of this method of analysis is introduced in this paper and has been designated fluorescence-intensity distribution

Site-specific biochemical reporter displacement

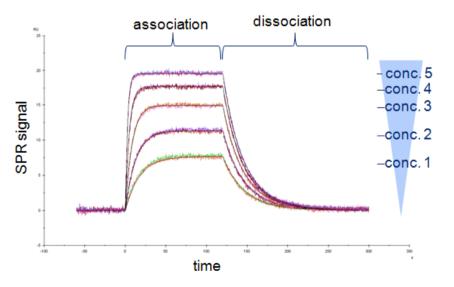
Determines $k_{\rm obs}$, $k_{\rm on}$, $k_{\rm off}$, K_d and residence time t_{1/2}

Neumann L.; von König K. & Ullmann D. (2011) HTS Reporter Displace ment Assay for Fragment Screening and Fragment Evolution Towards Leads with Optimized Binding Kinetics, Kinetic Selectivity, and Thermodynamic Signature, In: Methods in Enzymology, Vol. 493, 299-320.



Label free screening and profiling

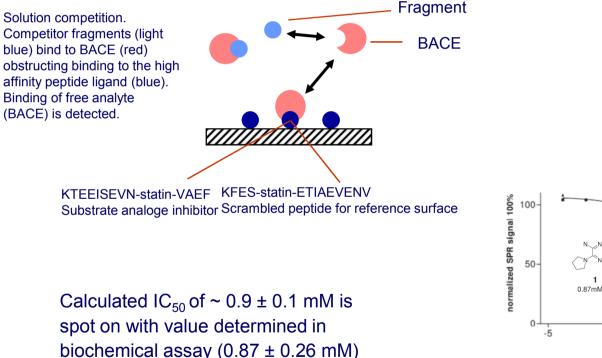
- Powerful tool for studying biomolecular interactions in a sensitive and label-free detection format
 - Secondary screening of compound libraries and hit conformation
 - Primary screening of larger fragment libraries for hit identification
- Principle
 - Measurement of the refractive index near the senor surface
 - Immobilization of a 'ligand' (i.e. enzyme, receptor) on the sensor surface
 - Monitoring of binding kinetics of analytes in solution passing the surface under continuous flow


Direct Binding Assay

- Monitoring biomolecular interactions in real-time
 - Target protein and unrelated control protein is immobilized to sensor chip
 - Analytes (compounds/fragments) are flown over enzyme surface
 - Binding of compound to enzyme results in increase of SPR signal (association phase)
 - Wash out of bound compound with buffer result in decrease of SPR signal (dissociation phase)
- Fitting of sensorgrams recorded at different compound concentrations to an appropriate interaction model

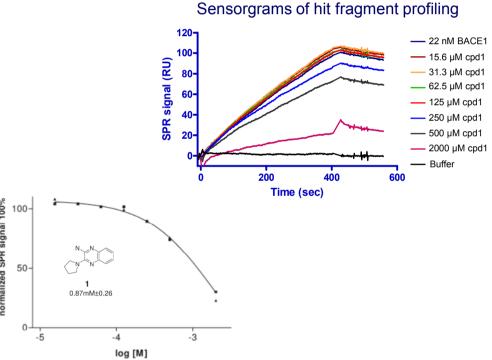
– Extraction of kinetic parameters (k_a, k_d \rightarrow K_D)

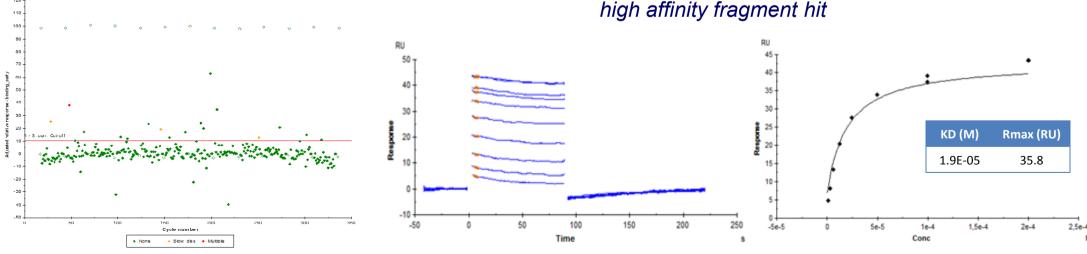
- Requirements/limitations
 - k_a / k_d values in reasonable ranges
 - Protein size (< 100 kDa)
- Excellent method to screen fragments and profile/ validate hits identified in HTS campaigns
 - BC4000 used for primary screening (up to 4,000 data pts/week)
 - Biacore T100 suitable for hit profiling and validation



In-solution Competition Assay (ISA)

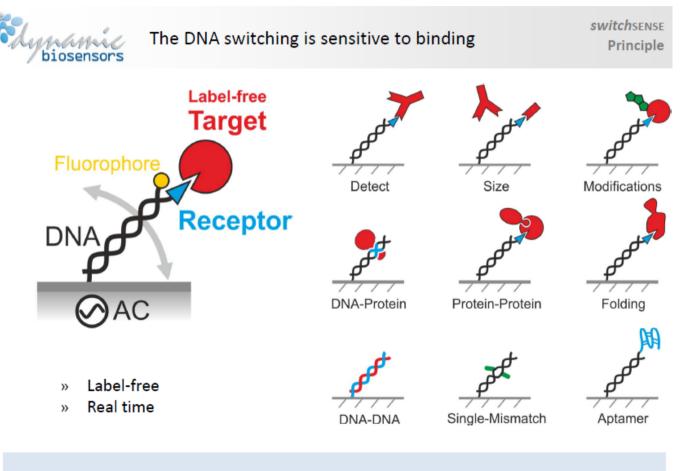
 Validation of fragment inhibitors of target enzyme by label-free SPR-based in-solution competition assay (ISA) – case study BACE




FIGURE 4: Inhibition in solution of interaction of BACE1/KEEI-SEVN-statin-VAEF with Compound 1 on a Biacore device. Data were fitted by nonlinear regression, and IC₅₀ is estimated to be 0.9 ± 0.1 mM (n = 2). The maximum applied compound concentration is 2 mM; therefore, only a partial sigmoidal concentration response curve was recorded.

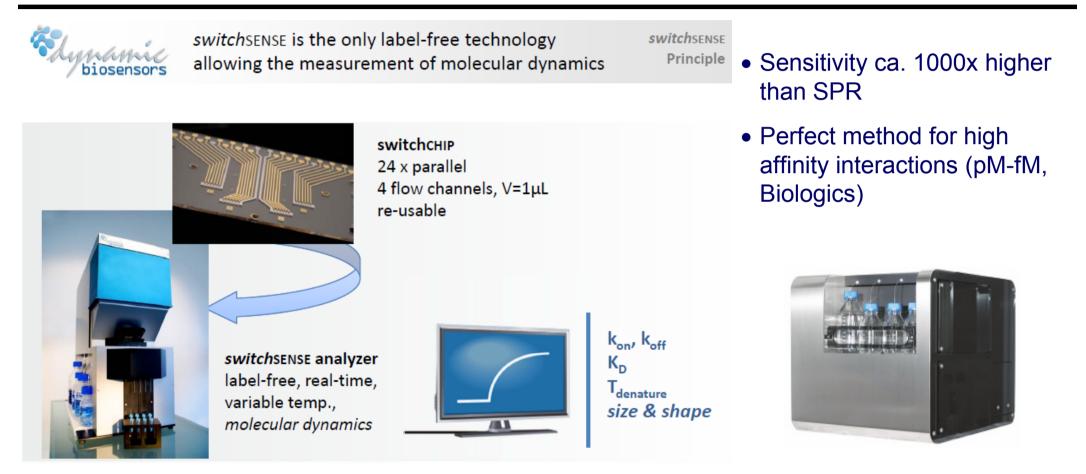
Case study fragment screen cytokine target

10k of the Evotec fragment library screened at 100 µM fragment conc. using BC4000


- Interactions with an unrelated control protein monitored in parallel
- Replicate injections of control inhibitors throughout the run to ensure surface performance: Z': 0.6 0.9
- Hit identification using 3σ method; hit threshold calculated for each plate and each protein surface separately
- Prioritization of fragments based on binding level, sensorgram shape and selectivity (using curve markers)
- Profiling of prioritized fragment hits returned specific, well behaved binders
 - 8-pt CRCs, incl. 2 conc. in duplicates, 2-fold dilution

switchSENSE Technology

Novel multiparamter "SPR-like" approach


- Principle is based on electrically switchable DNA interfaces
- New additonal parameters: Molecular Size and shape
- Located in Munich, Germany www.dynamic-biosensors.com/

Anaylsis of switching amplitude and of switching dynamics

switchSENSE Technology

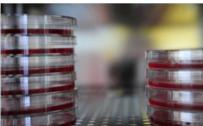
Technology Potential

Measurement of molecular dynamics allows unrivaled sensitivity and determination of size and shape (e.g. conformational changes, aggregation)

switchSENSE Analyzer

Mass Spectrometry based Proteomics

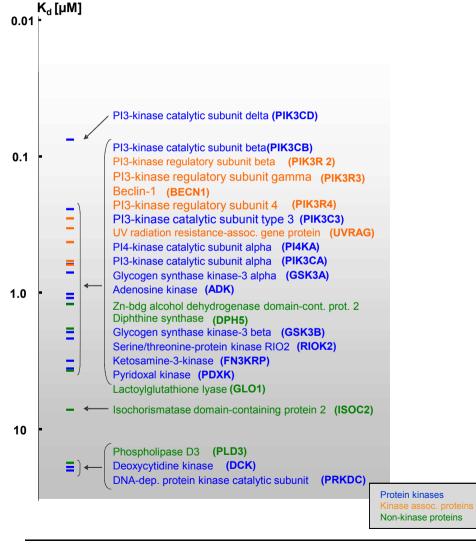
Binding Dynamics within Cells and Proteome

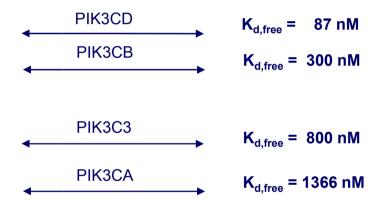


Cellular Target Profiling®

Revelation of a compound's cellular target spectrum

 Determines a compound's proteome-wide binding affinities in any cell line or tissue of choice




- State-of-the-art chemical proteomics facilitates **unbiased native profiling** against
 endogenously expressed, full length proteins in the presence of cellular co-factors and complex partners
- Enables **target deconvolution** of hit compounds from phenotypic screens and thus broadens the available chemical space for drug discovery
- Provides cellular selectivity data and identifies off-target liabilities to inform decisions in lead optimization and clinical candidate selection
- Extensive, non-target class restricted track record in target deconvolution and profiling of various small molecule compounds (e.g. kinase inhibitors, antibiotics, epigenetic drugs, HDM2 inhibitors & small molecules targeting metabolic enzymes, ligases, reductases, transferases, heat shock proteins)

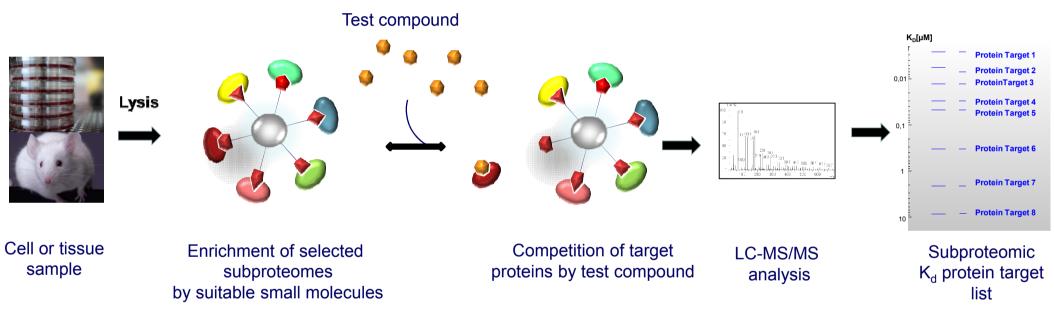
Cellular Target Profiling®

Profiling of a kinase inhibitor

UCB's cpd discriminates PI3K isoforms within a cancer cell line

Cellular Target Profiling®

Target deconvolution study with Johnson&Johnson


Protein Name	Sequence Coverage [%]	Binding Curve (Linker Compound)	K _D immo [μM]	Competition Active Compound	Competition Inactive Compound	K _p free [nM]
Protein X	80.7	and the second s	132.8			49.7
Protein A	1.9	and the second s	120.7			44.7
Protein B	3.5		127.9			51.0
Protein C	2		141.1			40.8
Protein D	0.1		116.9			47.8

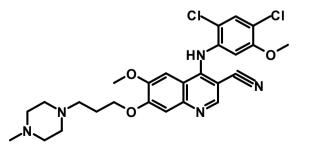
- Compound was identified from a phenotypic screens with differential effect on cancer cell lines
- Cellular Target Profiling[®] identified protein X as main cellular target
- Gene expression profiling and target validation by Johnson&Johnson confirmed key role of protein X as critical target in sensitive cancer cells

Chemical proteomics for sub-proteome analysis

KinAffinity[®] & Epigenetics Target Profiling[®]

Mixture of beads of broadly selective kinase or HDAC inhibitors

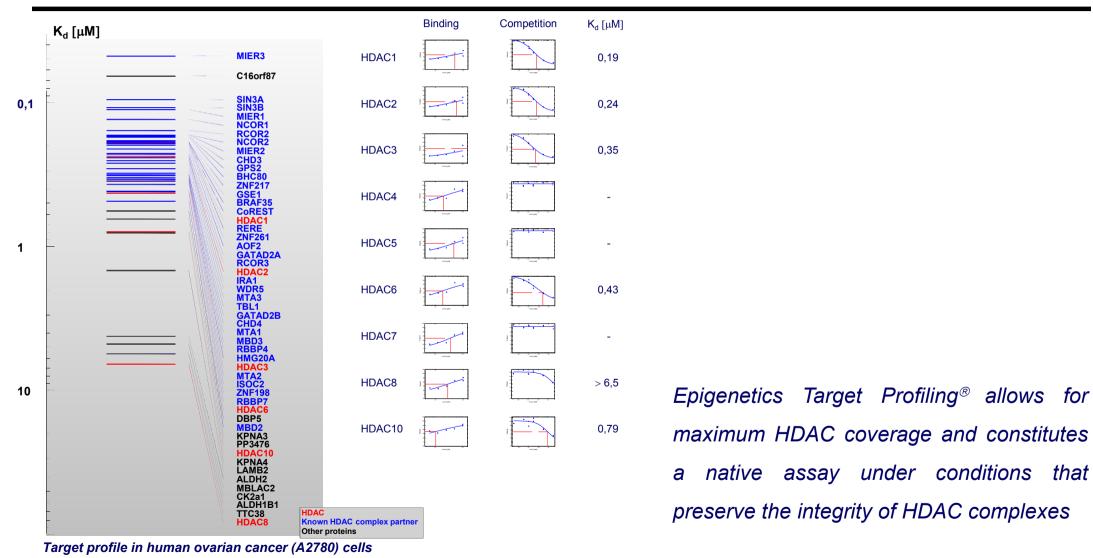
- Rapid native selectivity assessment against endogenous kinases HDACs without need for linker compound synthesis
- Correlation of *in vivo* data with cellular target information to support the selection of drug candidates



KinAffinity[®]

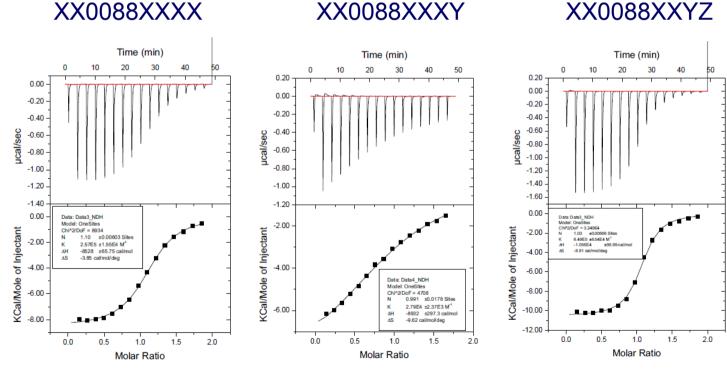
Native kinome profiling

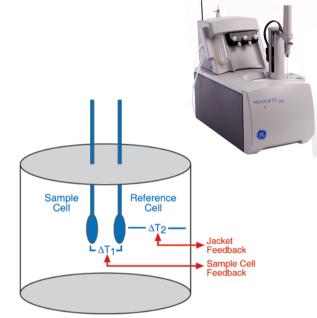
	K _d [µM]			
		_	_	MAP4K5 GAK
0,01	- - - -			ABL2 ABL1 LYN MAP4K3 FYN
	_			SRC MAP4K4
0,1	-		VI #////////////////////////////////////	FRK CSK QIK EphA2 EphB4 MAP2K2 ACK TNIK QSK SLK MAP2K1 MAP3K2
1	-			LOK YES MYT1 ZAK EphB2 FAK MAP3K4 GCN2 CK1d FER
10	- - - - - - -			IKKe MST3 MST1 SYK MAP2K6 PYK2 LRRK2 ILK MST2 TLK2
	Target p	rofile of	bosu	tinib in PC3 cells


- **Bosutinib** (SKI606, Wyeth) is currently tested in breast cancer and CML
- KinAffinity[®] enriched nearly 200 endogenously expressed kinases from human prostate cancer (PC3) cells
- 45 of these kinases were identified as molecular targets of bosutinib

Epigenetics Target Profiling®

Profiling of SAHA (Vorinostat) using a generic matrix

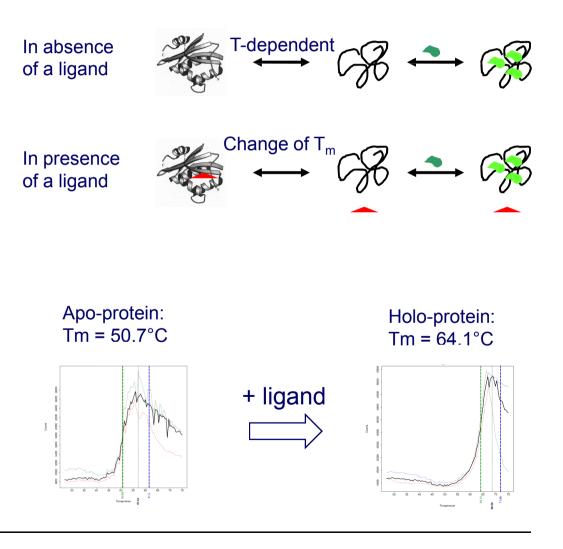

PAGE 22



Isothermal Titration Calorimetry (ITC)

Gold standard in binding thermodynamics

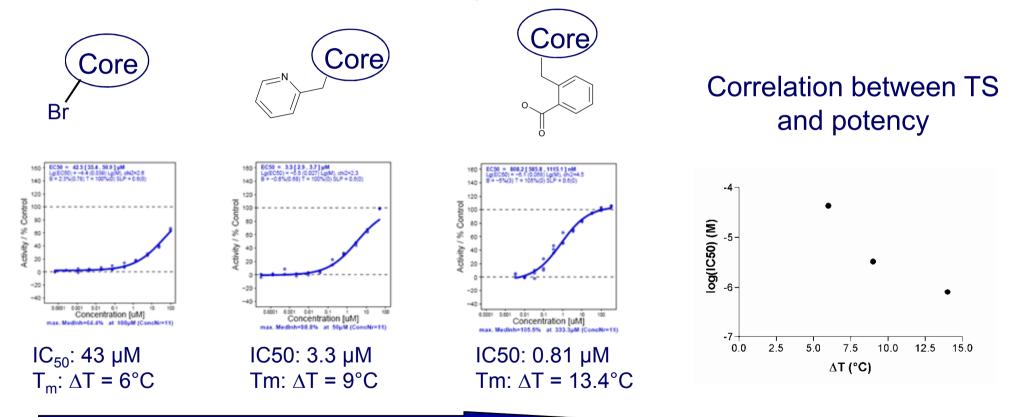
- ITC simultaneously determines all binding parameters (N, Kd, Δ H and Δ S) in a single experiment
- High protein consumption, low throughput (MicroCal iTC 200 as a sensible compromise)


- Power required to ΔT₁ maintained during titration of ligand into protein solution equal to Heat Change of Binding ΔH
- Slope defines 1/K_d
- Molar ration defines Number of binding sites

Thermal Shift Analysis

Protein folding and thermodynamic equilibrium analysis

- Thermal shift analysis
 - Based on energetic coupling between ligand binding and protein unfolding
 - Detects thermal unfolding of a protein (melting temperature T_m)
 - Assumes that a ligand changes the thermal stability of a protein (+/- ΔT_m)
 - Environment-sensitive dyes selectively interact with the unfolded state
- Evotec's capacity:
 - FluoDia T70, Photon technology international
 - 384-well format
 - 1 plate/day
 - Detection range: 25 75°C
 - Routinely applied in hit validation phase and as early filter for X-ray crystallography



Example: Hit to Lead Project Support

Thermal shift drived compound series prioritization

• Increase of thermal stabilization and potency within a compound series

Increase of potency and thermal shift

Example: Multi-equilibrium target inhibitors

Interpretation of thermal-shift data

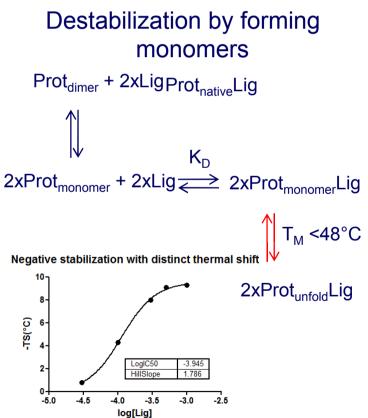
- Observations: compounds may stabilize or destabilize target (Prot)
- Proposed mechanism:

600

[Lig] (µM)

200

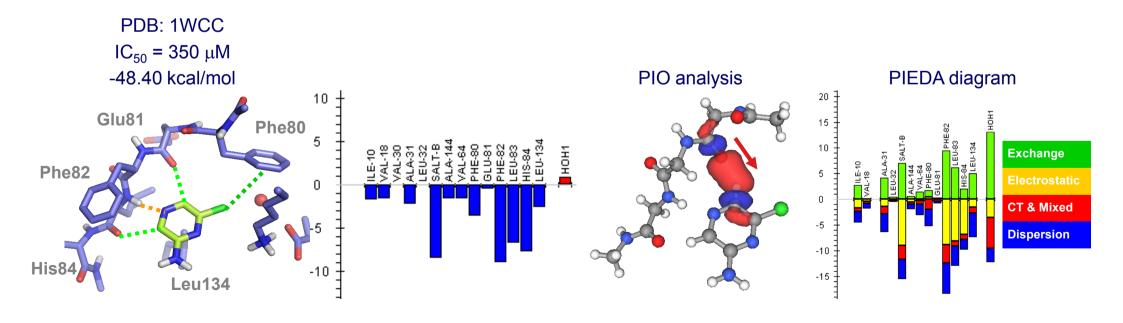
400


Cpd A Cpd B

1000

800

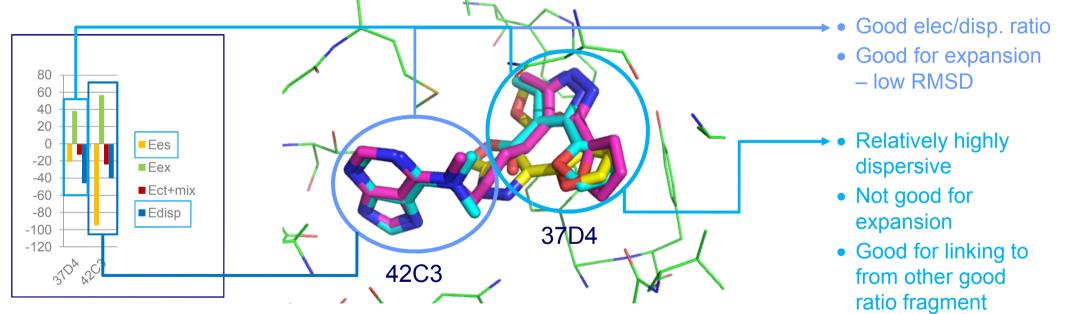
Destabilization by unfolding



Application of FMO Calculations

Example of a fragment in complex with CDK2

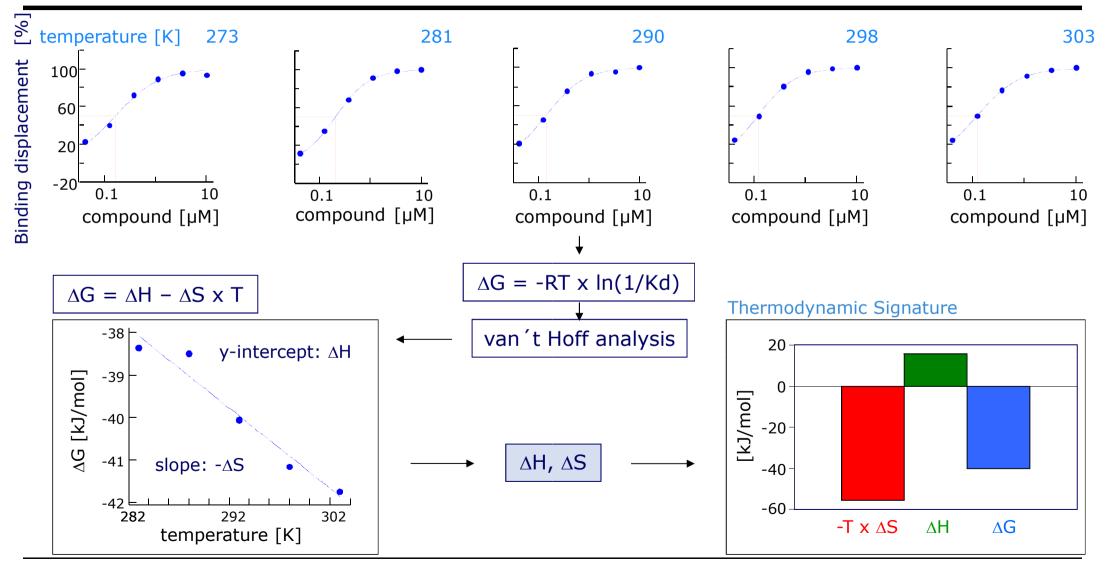
- Fragment Molecular Orbital (FMO) QM calculations can be used to assess the interaction enthalpy between a small molecule and each amino acid residue in the binding site of the protein
 - Analysis of Paired Interacting Orbitals (PIO) and by Pair Interaction Energy Decomposition Analysis (PIEDA) can give valuable insight into what are the key interactions
 - FMO results may not correlate directly with activity data as solvation and entropy effects are not considered



Use of FMO analysis to select fragments

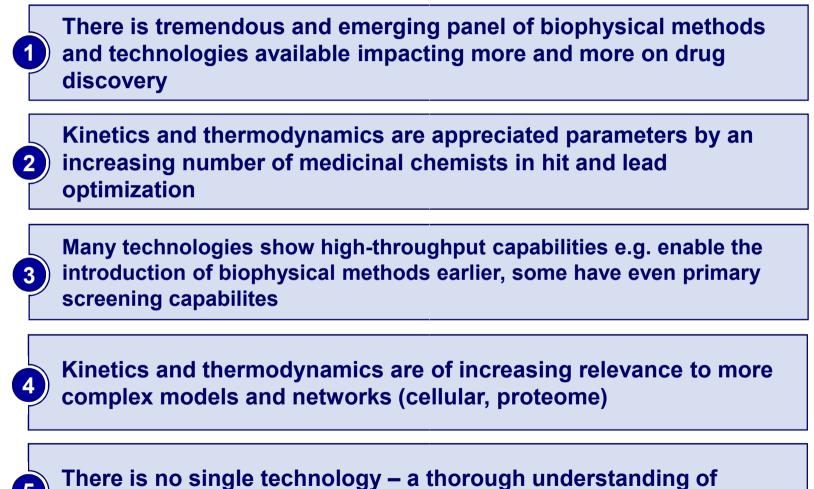
Which to expand on, which to link to? Hsp90 example

- FMO can be used to select/prioritize fragments for expansion or linking
- Ratio of electrostatic and dispersive interactions predicts which fragments are good to expand on, and which a good to link to



• Maintaining the electrostatic/dispersive balance in medicinal chemistry is important for maintaining potency (too high elec – high desolvation penalty)

Thermodynamic signatures - STR


Impacting MedChem optimization

Neumann L.; von König K. & Ullmann D. (2011) HTS Reporter Displace ment Assay for Fragment Screening and Fragment Evolution Towards Leads with Optimized Binding Kinetics, Kinetic Selectivity, and Thermodynamic Signature, In: Methods in Enzymology, Vol. 493, 299-320.

Summary and conclusions

biophysics will drive the selection of the right method

Acknowledgments

Key Contributors to Evotec's Biophysics technology platform

Biochemistry, Biophysics and Screening

Jan Kahmann Stefan Jaeger Joern Jungmann Florian Krieger Annette Mueller Bernd Schierholz Daniel Stein Dennis Wegener Dirk Winkler

Proteomics

Henrik Daub Klaus Godl Stefan Mueller Christoph Schaab Andreas Tebbe

Protein Production Mark Brooks Richard Hitchman Simone Mueller Christoph Scheich

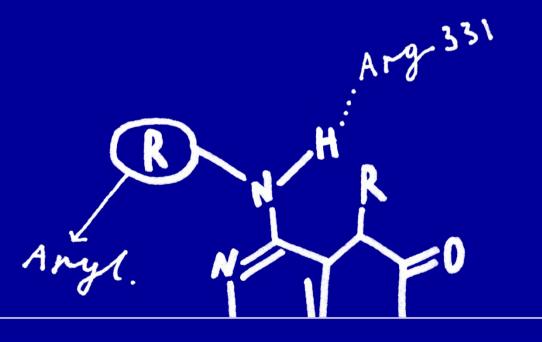
X-Ray Crystallography Ole Anderson John Barker Myron Smith

Computational Chemistry Osamu Ichihara Richard Law Michael Mazanetz Inaki Morao

Medicinal Chemistry Steve Courtney Stephen East David Hallett Craig Johnstone Clive McCarthy Mark Whittaker

Ulrich Rant Dirk Scholl

Lars Neumann


'RESEARCH NEVER STOPS'

Building innovative drug discovery alliances

Your contact:

Dr. Dirk Ullmann EVP *Lead Discovery*

+49 89.45244.65-36 - Office +49 170 5768451 - Mobile dirk.ullmann@evotec.com

