

A Public Private Partnership facilitating Drug Discovery

SGC Toronto

SGC Oxford

Outline

- Challenges in Drug discovery: science and organisational/ process
- We do not know how to pick the right targets
- Epigenetic proteins are likely to be better choices injury or tissue damage/pain,
 - stress or early life experiences/depression,
 - toxins/inflammation,
 - diet/ respiratory disease,
 - glucose/ vascular disease
- We are generating quality reagents and using these to do target discovery in human cells
- Plans: short term: human cell platform
 - medium term: Phase IIa

Most novel targets fail at clinical POC

...we can generate "safe" molecules, but they are not developable in chosen patient group

How can we make drug discovery more successful?

Challenges	Consequence	Solution	
Poor knowledge of human disease	 Preclinical assays rarely translate Poor target selection/ biomarkers/ clin. POC High attrition at IIa 	More human biology	
Slow or no publication of failures/ data, in academia and industry	 Duplication Waste of resources/ careers/ patients 	Publish rapidly	
No organisation has all necessary capabilities		Pool capabilities	
Early IP	• Slower, harder and more expensive	Treat as knowledge creation	
Poorly characterised reagents in academia (not strong in med. chem.)	 Do not leverage strengths of academia 	PPP to generate novel reagents and build med. chem. in academia	

- Public private partnership
 - large academic network
 - large pharma network
 - multiple funders: share risk
 - no IP
 - collaborate quickly and freely
 - disseminate data rapidly
- Generate
 - freely available, well characterised reagents
 - focus on knowledge creation & human target discovery

How do we pick the right target?

- Genetics monogenic
 oncology
- Network biology????
- Well characterised reagents in human
 - disease cells and tissues
 - Phase II studies

Modulating a late stage mediator is unlikely to be effective

Nos of genes/ proteins, up/down regulated

Decreased acetylation of mu opioid receptor through NRSF binding

Uchida et al 2010, J of Neuroscience

PNI reduces mu opioid receptor and NaV1.8 in DRG

Uchida et al 2010, J of Neuroscience

Chiechio et al 09

HDACi inhibitor is anti-hyperalgesic

HDACi increases expression of mGluR2 in lumbar cord (not 1a, 5 and 4)

MS275 (HDAC inhib): 5 days, 3mg/kg sc

Chiechio et al 09

HDAC inhibitors are analgesic in NRM

Persistent inflammatory or neuropathic insult

Hypoacetylation of Gad2

Suppress Gad2 transcription

Decreases glutamic acid decarboxylase (GAD65)

Impaired GABA inhibition

Hyperalgesia

All effects reversed by HDAC inhibitors

Zhang et al (2011) Nature Medicine

Chronic nerve injury reduces AcH3, Gad2 (message) and GAD65 (protein)

Zhang et al (2011) Nature Medicine

HDAC inhibitor reverses CFA induced decrease in GAD65

Zhang et al (2011) Nature Medicine

Maternal care, increases GR expression and dampens stress response

• Maternal care increases TF NGFI-A and histone acetylation, decreases DNA methylation and increases GR expression

- <u>Methionine promotes methylation and Low LG phenotype</u>
- HDAC inhibs increase acetylation and High LG phenotype

Childhood abuse decreases glucocorticoid receptor

Childhood abuse increases methylation of glucocorticoid receptor

McGowan et al 09

HDAC inhibs have anti-depressant like effects

Social Interaction

Covington et al 2009

Social defeat stress induced changes in gene expression are partially reversed by MS275 or fluoxetine

Covington et al 2009

T cell differentiation is associated with modifications of signature cytokines

Wei et al 09

JmjD3 is increased in activated macrophages

De Santa et al 07

Increased acH3 in MS patients

Frontal lobes, normal appearing white matter

Pedre et al (March 2011) J Neuroscience 3435

Increased HAT (P300) in female MS patients

Pedre et al (March 2011) J Neuroscience 3435

Diet: -2w and pregnancy Ovalbumen challenge (6-10w) Lung lavage

Hollingsworth et al 08

HMD induced decrease in gene expression is reversed by azacytidine (demethylating agent)

Azacytidine – in vitro

Hollingsworth et al 08

HDAC decreases and HAT increases with broncho hyper-responsiveness

Severe <0.5, mild <5, non asthmatic >8mg/mL Activity measured ex vivo in nuclear PBMC lysates

Su et al 09

Transient hyperglycemia produces long lasting changes in human AECs

EI-Osta 2008

Transient hyperglycemia produces sustained elevation of SET7 binding and H3K4me1

El-Osta 2008

Transient hyperglycemia produces sustained elevation of p65 mRNA

EI-Osta 2008

Bromodomain Probes - Target Profile

<100 nM
 >30-fold selectivity vs
 other sub-families
 Cellular potency <1µM

A selective inhibitor for BET sub-family

BRD4 probe shows enantiomeric specificity

First probe: JQ1 reduces proliferation in two patient derived cell lines

KI67 positive = proliferating

...and reduces tumour size

Impact of first probe

Cited 60+ times

Distributed to >200 labs/companies

- Partners started proprietary efforts
- Collaborator secured \$15 M VC funding
- Opened new area of science:

Zuber et al : Delmore et al: Dawson et al: Blobel et al: Mertz et al : Zhao et al: BRD4 as target in acute leukaemia JQ1 suppresses myc in multiple myeloma BRD4 in MLL (isoxazole inhibitor) Novel Targets in AML Myc dependent cancer Post mitotic transcriptional re-activation Nature, 2011 Aug 3 Cell, 2011 Volume 146, 904-917, 16 Nature 2011, Oct 2. Cancer Cell, 2011, Sep 13 PNAS, 2011, Oct 4 Nature Cell Biology, 2011 Oct 9

Lysine demethylases

JMJD3 inhibitor reduces TNF transcripts in RA primary macrophages

- No cell toxicity

JMJD3 inhibitor increases apoptosis in human breast cancer cells (MCF7)

Vehicle

D3 inhib

Red dots: propidium iodide stained apoptotic cells D3/UTX traditionally believed to be tumour suppressors

We are ahead for most families

			Structure	
	Purified	Assay	SGC	Others
НМТ	42	21	16	8
BRD	40	41	29	5
KDM	18	16	8	3
MBT	25	2	16	3
Tudor	36	5	8	14
Chromo	35	9	9	5
PHD	35	3	1	25
PARP	13	12	9	1
MACRO	11	8	5	2
HAT	8	7	5	3
PWWP	15	0	7	6

Pipeline (Mar 2012)

Plans

....everything pre-competitively

Acknowledgements

- SGC
 - Stefan Knapp
 - Udo Oppermann
 - Brian Marsden
 - Susanne Muller Knapp
 - Paul Brennan
 - Nicola Burgess Brown
 - Frank Von Delft
- Chris Schofield, Rob Klose, Stuart Conway
- Jay Bradner
- Chris Austin
- CIHR, Genome Canada, Ontario, Wellcome Trust
- GSK (Rab Prinjha), Novartis, Pfizer (Mark Bunnage, Anne Phelan), Lilly, Abbott, Takeda