

WTP Design by Computer

David Hayhurst, Purolite International

Presentation Content

- Design brief + influent water
- Ground rules + introduction to the software
- Water analysis
- Plant layout
- Treated water specification
- The design
 - Resin choice and design margin
 - Flow rate and cycle time
 - Optimising rinse volumes and regeneration levels
 - Vessel sizing
 - Adjusting for neutral effluent
- Outputs
- Other design options + OPEX comparison

Design Brief

Client requires demineralised water sourced from deep borehole.

Plant design requirements are for 80 m3/h flow. Operators work an 8 hour shift pattern.

Proposed option is counter-current packed bed SAC – degasser – SBA with separate polishing MB

Outline treated water specification is:

	Conductivity (µScm ⁻¹)	Silica (ppb)
Average	1	20
End point	2	50

Influent Water

Cations (ppm CaCO ₃)	Anions (ppm CaCO ₃)	Other info
Ca ²⁺ : 200	HCO ₃ ⁻ : 150	SiO ₂ (reactive): 10 ppm
Mg ²⁺ : 75	Cl ⁻ : 50	TOC: 0.1 ppm
Na+: 50	NO ₃ -: 30	pH: 7.2
K+: 5	SO ₄ ²⁻ : 100	EC: 430 µScm ⁻¹
Fe ³⁺ : 0.1		
Total Cations: 330.1	Total Anions: 330	

Ground Rules – Plant Design

- SAC WBA
 - For partially demineralised water $10 30 \mu$ Scm⁻¹ spec.
- SAC SBA
 - Most common combination can incorporate DG
- SAC WBA SBA
- WAC SAC WBA
- WAC SAC SBA
- WAC SAC WBA SBA \neg
 - Resin can be housed in separate vessels or layered in the same vessel

when high EMA

More complex, higher CAPEX systems but lower OPEX

due to higher regeneration efficiency of WAC/WBA

- Degasser commonly used when alkalinity > 1 meq/l (50 ppm as CaCO₃)
- DG located before WBA for acrylic WBAS, and after for polystyrenic WBAs

Ground Rules – Resin Choice / Grade

Anion resin selection:

- Reactive silica level
 - T1 sty/acr > T2 sty/bif.
- Operating (working) capacity
 - Bif > T2 sty > acr > T1 sty
- Operating flow rate (BV/h)
 - poss. acr bead deformation
- Organics load
 - Acr/bif > T1 sty > T2 sty
- Operating temperature
 - T1 sty >T2 sty> bif. > acr

Cation resin selection:

- Usually 8 % xlinked gel SAC, either in Na or H form.
- Macro resins usually used only in demanding conditions

WAC/WBA resins

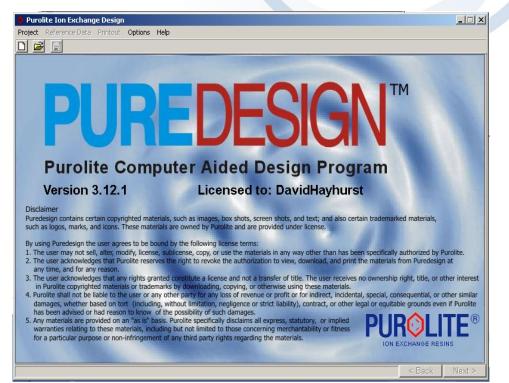
- Used in separate vessels or in layered (stratified) beds
- Std + graded products available
- Acr WAC, both sty+acr WBA available

Resin grades:

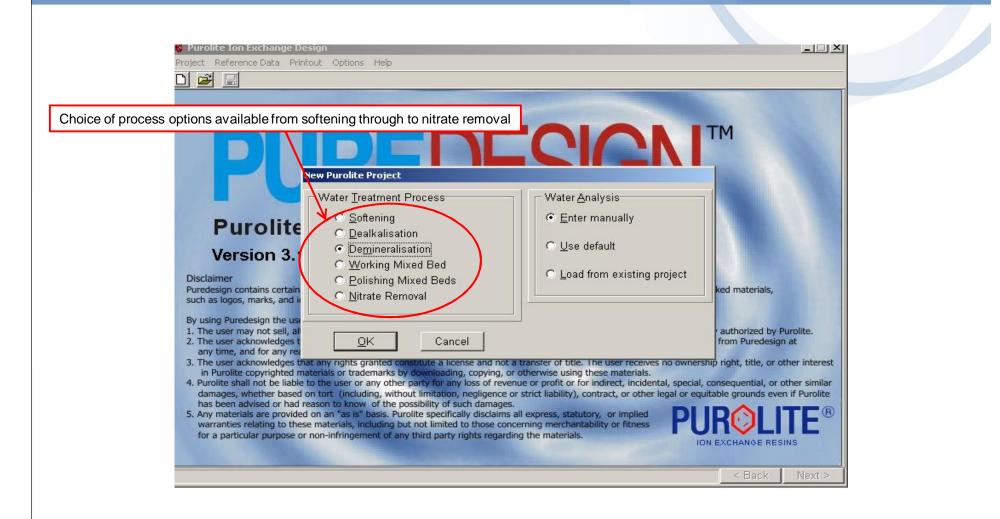
- Standard or Purofine for co-flow
- Puropack for counter-flow
- DL for stratified beds

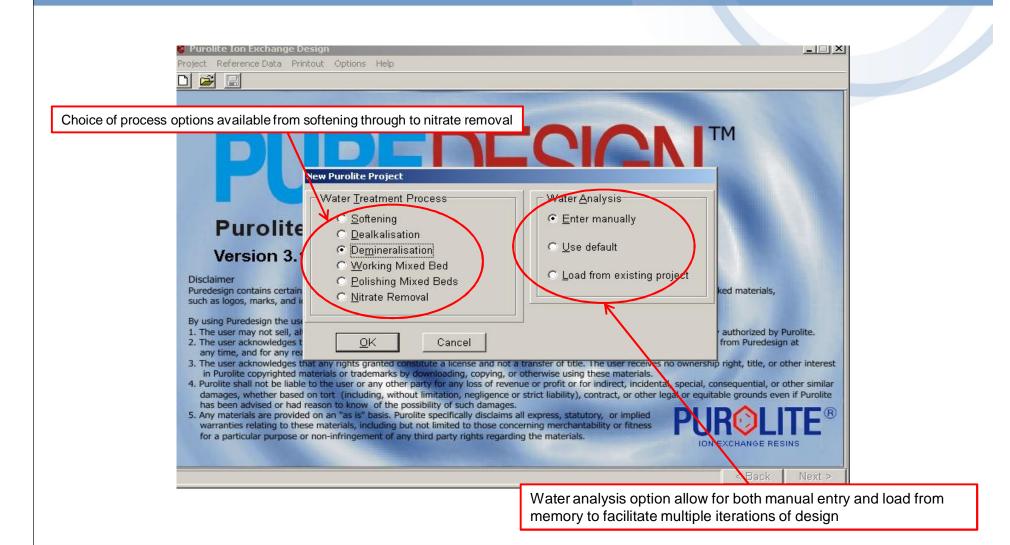
Ground Rules – Regeneration

• WAC / SAC – HCI or H_2SO_4


- Note Puredesign assumes 2-step regeneration with H₂SO₄ + displays average acid strength – if single addn., add 5 % to design margin
- WBA / SBA NaOH
 - Minimum level of 65 g/l for organic fouling waters
- Options include co or counter flow regeneration, backwashed or packed bed
- Standard rinses:
 - co-flow 2 BV slow, 4-6 BV fast
 - counter-flow 2 BV slow, 2BV fast for cation, 3-4 BV fast for anion
- Neutral effluent achievable by balancing regen levels

Provides theoretical model of plant


- Enables optimisation of equipment, service and regeneration conditions for given raw water and treated water specification
- Allows system modification to mimic the effects of changed raw water/treated water specification



Purolite Ion Exchange Dr oject Reference Data Prin	tout Options Help		TM
Purolite Version 3. Disclaimer Puredesign contains certain such as logos, marks, and i By using Puredesign the user 1. The user may not sell, al 2. The user acknowledges t	New Purolite Project Water Ireatment Process © Softening © Dealkalisation © Demineralisation © Working Mixed Bed © Polishing Mixed Beds © Nitrate Removal OK Cancel	Water Analysis • Enter manually • Use default • Load from existing project	ked materials, ' authorized by Purolite. from Puredesign at
in Purolite copyrighted m 4. Purolite shall not be liable damages, whether based has been advised or had r 5. Any materials are providee warranties relating to thes	at any rights granted constitute a license and not a aterials or trademarks by downloading, copying, or to the user or any other party for any loss of reven on tort (including, without limitation, negligence or reason to know of the possibility of such damages. d on an "as is" basis. Purolite specifically disclaims a se materials, including but not limited to those conce r non-infringement of any third party rights regarding the second se	otherwise using these materials. ue or profit or for indirect, incidental, special, r strict liability), contract, or other legal or equal entry of the materials. In the materials. In the materials.	, consequential, or other similar

Water Analysis On Screen

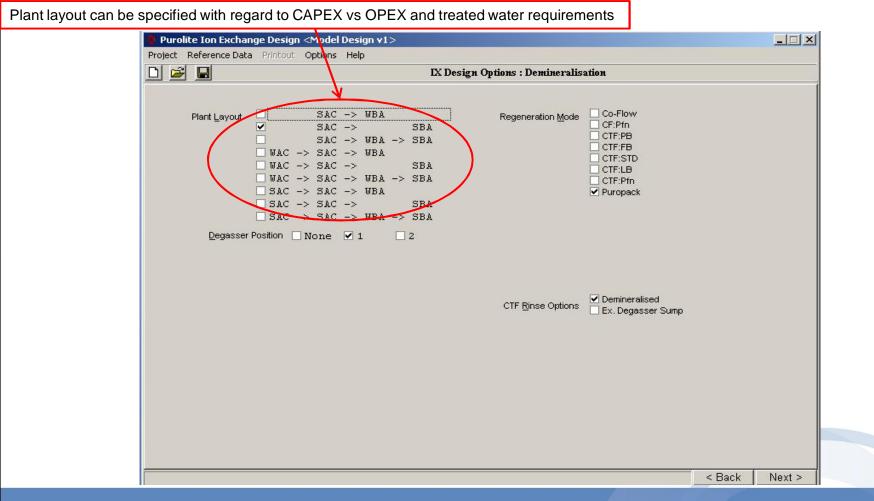
2			Influer	t Water D	ata : Demin	eralis	ation			
Origin Deep	Borehole	2		P <u>r</u> etr	eatment U	nknot	m			
Temne	rature 5	°C 💌		р <u>н</u> 7.	20		Conductivit	y 430.00	us(cm	-
Tombo	ratare je			ME 1.			Conductivit	,]	Ibovom	
Dissol⊻. Solids	330.10	ppm CaCO3 💌					Total Al <u>k</u> alinity	150.00	ppm CaCO3	-
Total Hard <u>n</u> ess	275.00	ppm CaCO3 💌				Egu	iv. Mineral Acid.	180.00	ppm CaCO3	•
	÷								2.	
			Detaile	d Water A	nalysis					
	CATIONS		Set all ion	s unit to 🎼	opm CaCO3	-		ANIONS		
			-	10				2	10	
<u>C</u> alcium	200.00	ppm CaCO3 💌	Silica 10	.00	opm CaCO3	•	<u>B</u> icarbonates	150.00	ppm CaCO3	-
<u>M</u> agnesium	75.00	ppm CaCO3 💌	Eree CO2 0.	00 k	opm CaCO3	-	C <u>a</u> rbonates	0.00	ppm CaCO3	-
So <u>d</u> ium	50.00	ppm CaCO3 💌	Organics 0.	10000	opm TOC	-	Chļorides	50.00	ppm CaCO3	-
Potassium	5.00	ppm CaCO3 💌					<u>S</u> ulfates	100.00	ppm CaCO3	-
(<u>1</u>) Iron	0.10	ppm CaCO3 💌					Nitrat <u>e</u> s	30.00	ppm CaCO3	•
(<u>2</u>) Others		ppm CaCO3 🔻					Others: <u>W</u> eak		ppm CaCO3	-
							(<u>3</u>) Strong		ppm CaCO3	-
							-	,	10.00 /2	
Tot. Cations	330.10	ppm CaCO3 💌					Tot. Anions	330.00	ppm CaCO3	-

Water Analysis On Screen

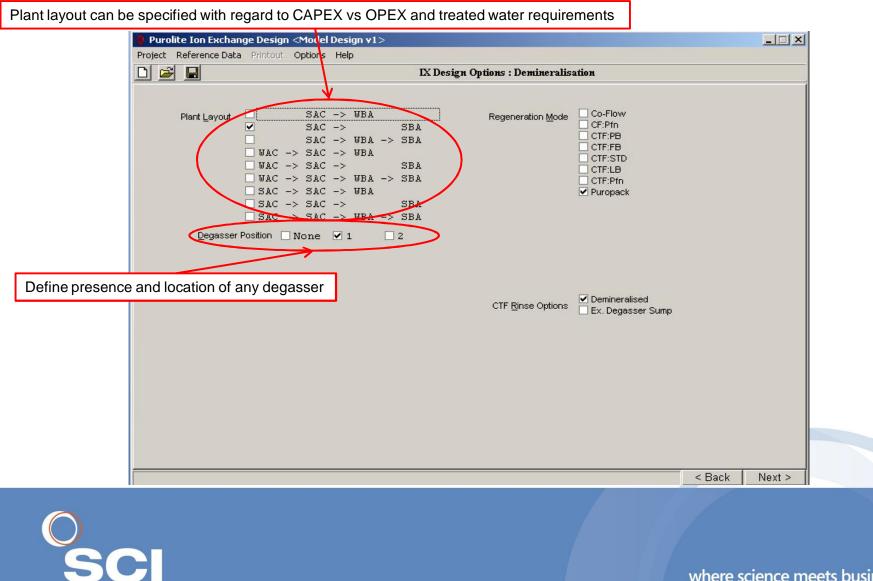
) 🚅 🗐				Influent Water Data : Demineralisation
<u>O</u> rigin Deep	Borehole	1		Pretreatment Unknown
Ţempe	rature 5	°C ▼		p <u>H</u> 7.20 Conductivity 430.00 µS/cm
Dissol <u>v</u> . Solids	330.10	ppm CaCO3	-	Total Al <u>k</u> alinity 150.00 ppm CaCO3
Total Hard <u>n</u> ess	275.00	ppm CaCO3	-	Eguiv, Mineral Acid, 180.00 ppm CaCO3
	CATIONS		_	Set all ions unit to ppm CaCO3 ANIONS
<u>C</u> alcium	200.00	ppm CaCO3	-	Silica 10.00 ppm CaCO3 ▼ Bicarbonates 150.00 ppm CaCO3
<u>M</u> agnesium	75.00	ppm CaCO3	-	Evee CO2 0.00 ppm CaCO3 💌 Carbonates 0.00 ppm CaCO3
So <u>d</u> ium	50.00	ppm CaCO3	-	organics 0.10000 ppm TOC 🗨 Chlorides 50.00 ppm CaCO3
<u>P</u> otassium	5.00	ppm CaCO3	-	Sulfates 100.00 ppm CaCO3
(<u>1</u>) Iron	0.10	ppm CaCO3	-	Nitrat <u>e</u> s 30.00 ppm CaCO3
(<u>2</u>) Others		ppm CaCO3	-	Others: Weak ppm CaCO3
				(3) Strong ppm CaCO3
	330.10	ppm CaCO3	=/	Tot. Anions 330.00 ppm CaCO3

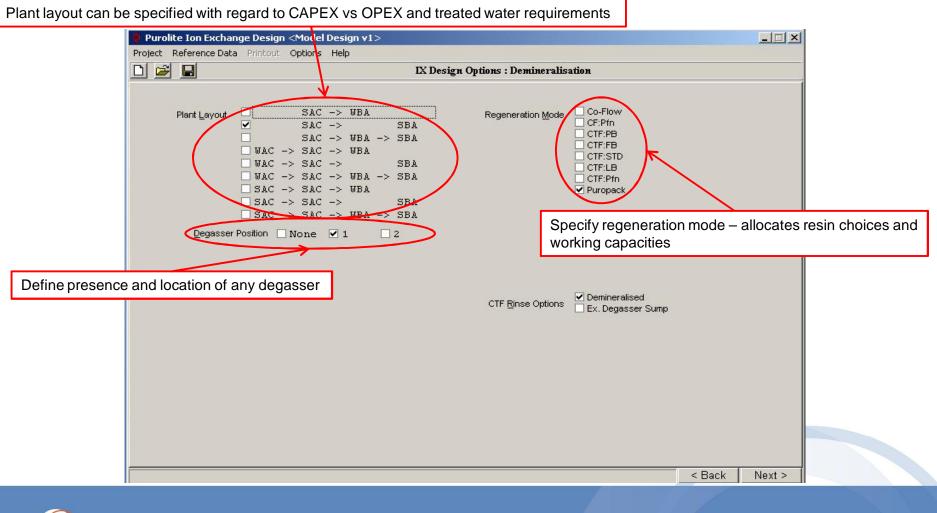
Several units available when entering water analysis, standardisable with 'set all ions to' button

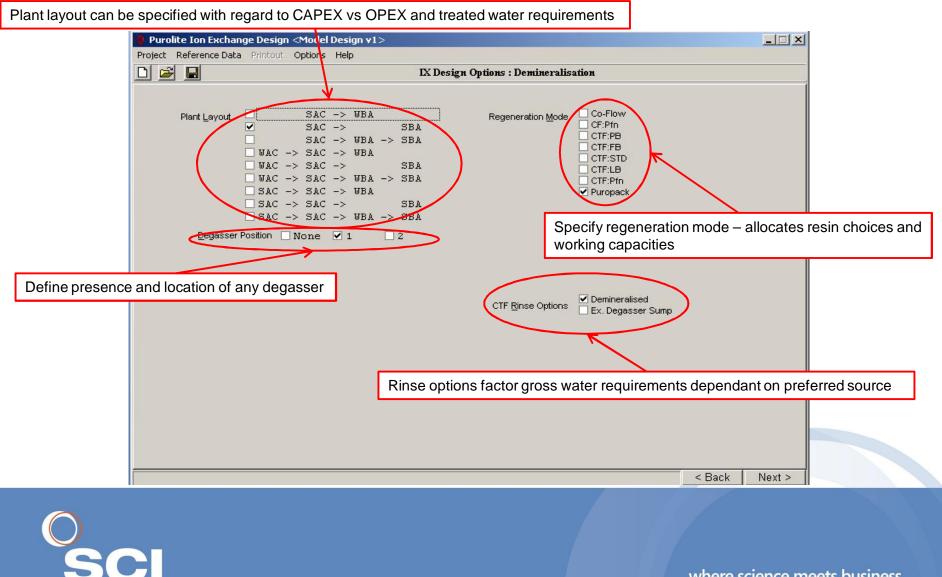
Water Analysis On Screen


p Borehold perature 5 Is 336710 ss 275.00	ppm CaCO3 ppm CaCO3 pr deep bor	■ rehole	e Der		Pretreatmer	it Unkn E	own		μS/cm ppm CaCO3 ppm CaCO3	_
perature 5 Is 335 10 Is 275.00 Ssumed for CATIONS	ppm CaCO3 ppm CaCO3 pr deep bor	rehol	e Der	p <u>H</u> tailed Wat	Pretreatmer	it Unkn E	own Conductivi Total Al <u>k</u> alinity	150.00	ppm CaCO3	
perature 5 Is 335 10 Is 275.00 Ssumed for CATIONS	ppm CaCO3 ppm CaCO3 pr deep bor	rehol		p <u>H</u> tailed Wat	ter Analys	E	Conductivi Total Al <u>k</u> alinity	150.00	ppm CaCO3	
s 330 10 s 275.00 ssumed fo	ppm CaCO3 ppm CaCO3 or deep bor	rehol		tailed Wa	ter Analys	sis	Total Al <u>k</u> alinity	150.00	ppm CaCO3	
ss 275.00 ssumed fo	ppm CaCO3	rehol				sis				_
ssumed fo	or deep bor					sis	guiv. Mineral Acid.	180.00	ppm CaCO3	•
CATIONS										
		_	Set	all ions unit t	to I pom Ca	000 F				
n 200.00		-				CU3 🔟		ANIONS		
. 1200.00	ppm CaCO3	_	Filica	a 10.00	ppm Ca	CO3 💌	<u>B</u> icarbonates	150.00	ppm CaCO3	•
m 75.00	ppm CaCO3	•	Eree CO2	2 0.00	ppm Ca	CO3 💌	C <u>a</u> rbonates	0.00	ppm CaCO3	-
m 50.00	ppm CaCO3	-	Or <u>g</u> anics	s 0.1000	0 ppm TC)C 🔽	Chļorides	50.00	ppm CaCO3	-
m 5.00	ppm CaCO3	-					<u>S</u> ulfates	100.00	ppm CaCO3	•
n 0.10	ppm CaCO3	•	1				Nitrat <u>e</u> s	30.00	ppm CaCO3	-
s	ppm CaCO3	-					Others: <u>W</u> eak		ppm CaCO3	-
							(<u>3</u>) Strong		ppm CaCO3	•
s 330.10	ppm CaCO3	J					Tot. Anions	330.00	ppm CaCO3	-
	n 0.10 s 330.10	n 0.10 ppm CaCO3 s ppm CaCO3	n 0.10 ppm CaCO3 V s ppm CaCO3 V	n 0.10 ppm CaCO3 V s ppm CaCO3 V	n 0.10 ppm CaCO3 V s ppm CaCO3 V	n 0.10 ppm CaCO3 💌 s ppm CaCO3 💌	n 0.10 ppm CaCO3 💌 s ppm CaCO3 💌	n 0.10 ppm CaCO3 Nitrates S ppm CaCO3 Others: Weak (3) Strong	n 0.10 ppm CaCO3 s ppm CaCO3 (3) Strong	n 0.10 ppm CaCO3 V s ppm CaCO3 V (3) Strong ppm CaCO3 (3) Strong ppm CaCO3

Several units available when entering water analysis, standardisable with 'set all ions to' button

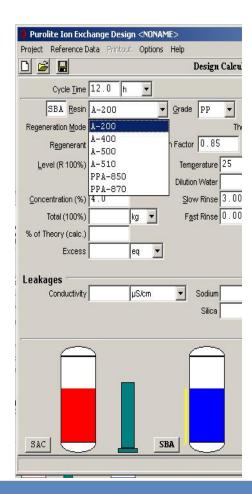


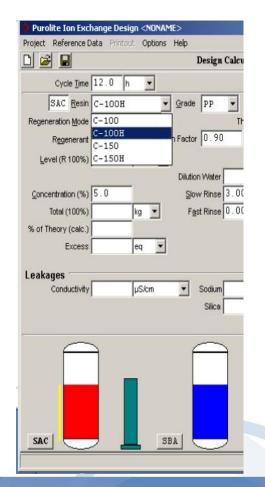

	IX Desi;	gn Options : Demineralis	ation	
Plant <u>L</u> ayout <u>D</u> egasser	SAC -> WBA SAC -> WBA SAC -> WBA WAC -> SAC SAC -> WBA SAC -> SBA Position None 1 2	Regeneration <u>M</u> ode	Co-Flow CF:Pfn CTF:PB CTF:FB CTF:FB CTF:STD CTF:LB CTF:LB CTF:Pfn ✔ Puropack	
		CTF <u>R</u> inse Options	✓ Demineralised ☐ Ex. Degasser Sump	



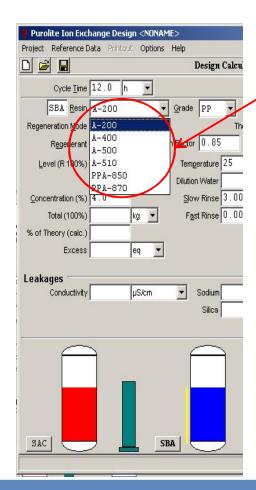
Treated Water Specification

n ci 🖂 🔲	Printout Options Help	Characteristics : Demineralisation : SA	C > DEC > SBA	8	
	ITEAIEU WAIET	characteristics : Demineralisation : SA	C -> DEG -> 3BA	•	
<u>A</u> verage Conductivit	ity 1.00 µS/cm ▼	A <u>v</u> erage Silica Leakage 20 . 0	ppb SiO2	-	
<u>E</u> ndpoint Conductivit		Endpoint Silica Leakage 50.0		1	
=			1		
	CO2 Residual After SAC E				
	After Degas	ser 0.2000 meq/1 💌			

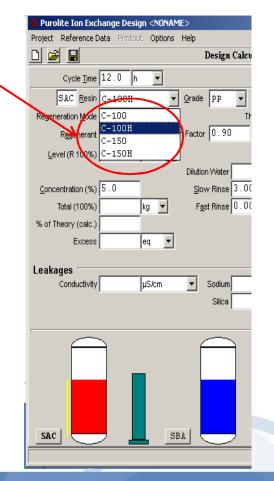



The Design

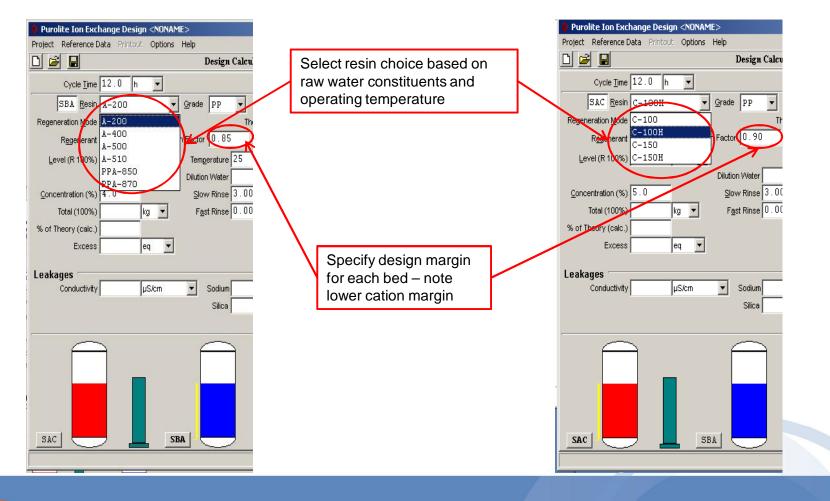
Purolite Ion Exchange Design <noname></noname>	
Project Reference Data Printout Options Help	
🗋 🚔 📕 Design Calculation	n : Demineralisation : SAC -> DEG -> SBA
Cycle Time 12.0 h	Elow Rate m3/h 💌 Net Run m3 💌
SBA Resin A-400 V Grade PP V Rel. Fl	Flow Rate BV/h 💌 Ionic Load eq 💌
Regeneration Mode Puropack - Theoret.	t. Capacity eq/ 💌 Gross Load m3 💌
Regenerant NaOH 👻 Design Factor 1.00	Capacity eq/ Organic Load g/
Level (R 100%) 50.0 g/l 💌 Temperature 25	C
Dilution Water	m3 💌
Concentration (%) 4.0 Slow Rinse 3.000	BV Bed Depth 1400 mm Metric
Total (100%) kg 💌 F <u>a</u> st Rinse 0.000	BV 💌 Vessel Diameter mm 💌 Round 🗌 Imperial
% of Theory (calc.)	Cross-section Area m2 None
Excess eq	Linear Velocitym/h
Lashawaa	Pressure Drop kPa 💌
Leakages Conductivity µS/cm ▼ Sodium	ppb Na 🔻
	ppb SiO2 V
\square	
	<pre></pre>
	, Duck INEAL 2



The Design – Resin Choice and Design Margin



The Design – Resin Choice and Design Margin



Select resin choice based on raw water constituents and operating temperature

O SCI

The Design – Resin Choice and Design Margin

O SCI

										ation : SA		_		- E			1	_
Cycle <u>T</u> ime		h 🗾						low Rate				<u> </u>		Run [m3	1
SBA <u>R</u> esin	101 0100000		<u>ب</u> ۹	rade	PP	_		low Rate	-			-	Ionic L	10000 A.C.			eq	
egeneration <u>M</u> ode		97.00]					Capacity				-	Gross L				m3	
Regenerant	NaOH	<u> </u>	esign F	actor	0.85			Capacity	0.6	i eq/i		_	Organic L	oad	3.1		g/I	
Level (R 100%)	50.0	gЛ	-	Tempe	rature	25		•C 💌		Res	in volume	640) I		▼ R	Round	On Off	
			C		Water			m3	-			(d)			_			
Concentration (%)	102402010			Slow	Rinse	3.0	00	BV	•		ed Depth			i	•		Met	ric
Total (100%)	320	kg 💌		F <u>a</u> st	Rinse	0.0	00	BV	•	⊻essel	Diameter	240) mn	1	▼ R	Round		
of Theory (calc.)	197									Cross-sec	tion Area	4.4	5 m2	1	-		- Nor	e
Excess	3941	eq	-							Linea	r Velocity	18.	D m/	1	-			
•										Pres	sure Drop	35.	7 kPi	a	•			
conductivity	0.50	µS/cm	10	.	Sodium	15	5	ppb Na		T .								
condicinity	1	[poioiii	1		Silica			ppb SiO	2	=								
					Silica			lbbp oio	* I									
	- I			1000														

Purolite Ion Exchange Design <noname></noname>		
Project Reference Data Printout Options Help		
Design Calculation : Demineralisation : SAC -> DEG -> SBA		
Cycle Iine 12.0 h	Run 960.0	m3 💌
SAC Resin C-100H Grade PP Rel. Flow Rate 12.2 BV/h Ionic Lo	bad 6684	eq 💌
Regeneration Mode Puropack 👻 Theoret. Capacity 1.07 eq/l 💌 Gross Lo	bad 1013.9	m3 💌
Regenerant HC1 V Design Factor 0.90 Capacity 0.96 eq/ V		
Level (R 100%) 55.0 g/l ▼ Resin volume 6950 l	▼ Round	✓ On
Dilution Water 6.5 m3		
Concentration (%) 5.0 Slow Rinse 3.000 BV ▼ Bed Depth 1702 mm	-	Metric
Total (100%) 382 kg ▼ Fast Rinse 0.000 BV ▼ Vessel Diameter 2300 mm	Round	I 🔲 Imperial
% of Theory (calc.) 157 Cross-section Area 4.08 m2	•	None None
Excess 3797 eq 💌 Linear Velocity 19.6 m/h	-	
Pressure Drop 38.6 kPa	-	
Leakages Conductivity 0.50 µS/cm ▼ Sodium 15.5 ppb Na ▼		
Silica 4.2 ppb SiO2 V		
·		
	< Back	Next >

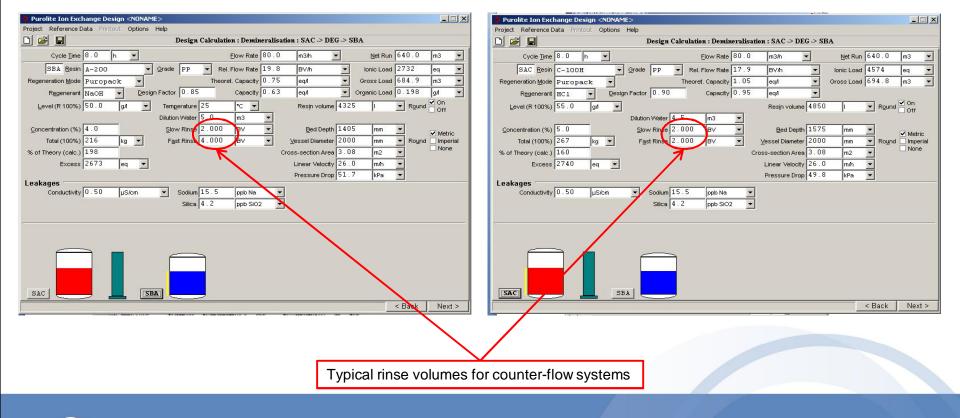
Introducing a cycle time generates a basi	ic model with a series of default set points
Purolite Ion Exchange Design <noname></noname>	Purolite Ion Exchange Design <nunime></nunime>
Project Reference Data Printout Options Help	Project Reference Data Printout. Options Help
Design Calculation : Demingralisation : SAC > DEG -> SBA	Design Calculation : Demineralization : SAC -> DEG -> SBA
Cycle Ime 12.0 h 💌 Elow Rae 80.0 m3/h 💌 Net Run 960.0 m3 💌	Cycle Time 12.0 h 💌 Elow Kate 80.0 m3/h 💌 Net Run 960.0 m3 💌
SBA Resin A-200 V grade PP V Rel. Flow Rate 13.2 BV/h V Ionic Load 4057 eq V	SAC Resin C-100H • Qrade PP • Rel. Flow Rate 12.2 BV/h • Ionic Load 6684 eq •
Regeneration Mode Puropack - Theoret. Capacity 0.75 eq Gross Load 1015.7 m3 -	Regeneration Mode Puropack Theoret. Capacity 1.07 eq.t Gross Load 1013.9 m3
Regenerant NaOH 💌 Design Factor 0.85 Capacity 0.64 eq/ 💌 Organic Load 0.198 g/ 💌	Regenerant HC1 V Design Factor 0.90 Capacity 0.96 eq/
Level (R 100%) 50.0 g/l ▼ Temperature 25 °C ▼ Resin volume 6400 I ▼ Rgund Off	Level (R 100%) 55.0 g/ ▼ Resin volume 6950 I ▼ Rgund On
Dilution Water 7 . 4 m3	Dilution VVater 6 . 5 m3
Concentration (%) 4.0 Slow Rinse 3.000 BV ▼ Bed Depth 1439 mm ▼ ✓ Metric	Concentration (%) 5.0 Slow Rinse 3.000 BV Ped Depth 1702 mm Vetric
Total (100%) 320 kg ▼ Fast Rinse 0.000 BV ▼ Vessel Diameter 2400 mm ▼ Round Imperial None	Total (100%) 382 kg ▼ Fast Rinse 0.000 BV ▼ Vessel Diameter 2300 mm ▼ Round Imperial None
% of Theory (calc.) 197 Cross-section Area 4.45 m2	% of Theory (calc.) 157 Cross-section Area 4.06 in2
Excess 3941 eq Velocity 18.0 m/h Velocity 18.7 kPa Velocity 18.7 k	Excess 3797 eq 💌 Linear Velocity 19.6 m/h 💌
Leakages	Pressure Drop 38.6 KPa 💌
Conductivity 0.50 µS/cm 💌 Sodium 15.5 ppb Na 💌	Conductivity 0.50 µS/cm V Sodium 15.5 ppb Na V
Sitica 4.2 ppb SiO2 💌	Silica 4 . 2 ppb SiO2 💌
	SAC SBA
< Back Next >	< Back Next >

🖇 Purolite Ion Exchange Des							×
Project Reference Data Printo		n Calculation : Demineralisat	ion : SAC -> DEG -> S	BA			
	h 💌	Elow Rate 80.0	m3/h 💌	<u>N</u> et Run	640.0	m3	-
SBA Resin A-200	▼ Grade PP	Rel. Flow Rate 19.4	B∨/h ▼	Ionic Load	2738	eq	Īŀ
Regeneration Mode Puropa	.ck 🔻	Theoret. Capacity 0.73	eq/l	Gross Load	685.7		-
Regenerant NaOH	▼ Design Factor 0.8	5 Capacity 0.64	eq/l	Organic Load			-
Level (R 100%) 50 . 0	g/ Temperature Dilution Wate		Resin volume 4429	5	Round	✓ On Off	
Concentration (%) 4.0 De Total (100%) 221 % of Theory (calc.) 202 Excess 2792	Use the closest r	inings during calculation	ended <u>C</u> hange limit		Round	V Metric	
	_						
	SBA						

O SCI

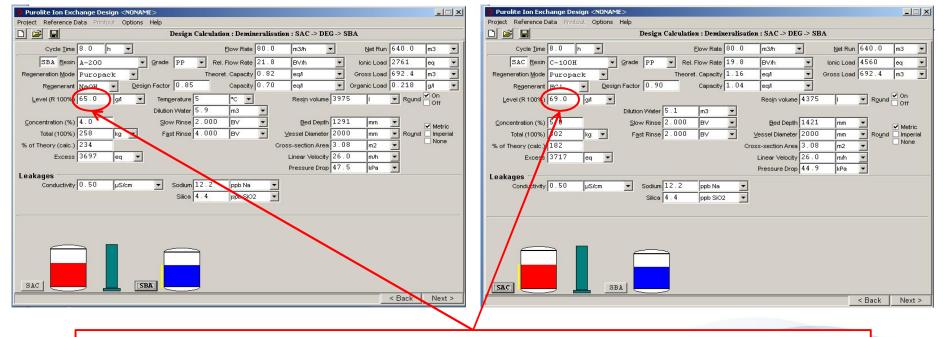
Purolite Ion Exchange Design <noname> Project Reference Data Printout Options Help</noname>	×
Design Calculation : Demineralisation	t : SAC -> DEG -> SBA
Cycle Time 8.0 h	m3/h 💌 Net Run 640.0 m3 💌
SBA Resin A-200 Grade PP Rel. Flow Rate 19.4	BV/h ▼ Ionic Load 2738 eq ▼
Regeneration Mode Puropack 💌 Theoret. Capacity 0.73	eq/l 💌 Gross Load 685.7 m3 💌
Regenerant NaOH - Design Factor 0.85 Capacity 0.64	eqA Organic Load 0.194 gA
Level (R 100%) 50.0 g/l ▼ Temperature 25 °C ▼	Resin-volume 4425 I Round Off
Dilution Water 5.1 m3 V	
Concentration (%) 4.0 Design Calculation : SBA	Metric
Total (100%) 221 Bed depth 995 < 1200 mm not recommend	ded 🛛 🚽 Ro <u>u</u> nd 🗆 Imperial
% of Theory (calc.) 202 Use the closest recommended value ?	
Excess 2792	
Leakages — Don't show warnings during calculation	
Conductivity 0.50 Yes No	Change limit
Calculation in progress. Please wait	A warning ! There are various 'hard' and
	built into the program. We would sugge
	design margin if these warnings are over
	the program assumes operation within
	parameters

				1	Design	Calcu	lation	: Demi	neralis	sation :	SAC -> D	EG -> 5	SBA					
Cycle <u>T</u> ime	8.0	h	•				Ele	ow Rate	80.1)	m3/h	-	Net	Run	640	. 0	m3	-
SBA Resin	A-200		-	Grade	PP	-	Rel. Flo	ow Rate	19.1	3	B∨/h	•	Ionic L	.oad	273	6	eq	ľ
Regeneration Mode	Purop	ack	-			Th		Capacity			eq/l	-	Gross L				m3	
Regenerant	NaOH	-	Desig	n Factor	0.85		0	Capacity	0.6	4	eq/l	-	Organic L	.oad	0.1		gЛ	
Level (R 100%)	50.0	gЛ	•	Temp	erature	25		•C 💌]		Resin volum	e 432	5 I		•	Round	On Off	
				Dilution	n Water	5.0		m3	-									
Concentration (%)	4.0			Slov	v Rinse	3.00	00	BV	-		Bed Dept	h 140	5 mr	n	•		Metr	ic.
Total (100%)	216	kg	-	F <u>a</u> s	t Rinse	0.00	00	BV	-	⊻e	ssel Diamet	er 200	0 mr	n	• 1	Round	🗌 Impe	erial
6 of Theory (calc.)											-section Are	100		2	•		- Non	P
Excess	2668	eq	-								near Veloci	20 L			•			
										P	ressure Dro	p 51.	7 kP	a	•			
eakages Conductivity	0.50	μS/	cm	-	Sodium	15.5	5	ppb Na	-	Ŧ								
		- Prove			Silica			ppb SiC	2	Ţ								
<u></u>				F		7												
	-			1		2												

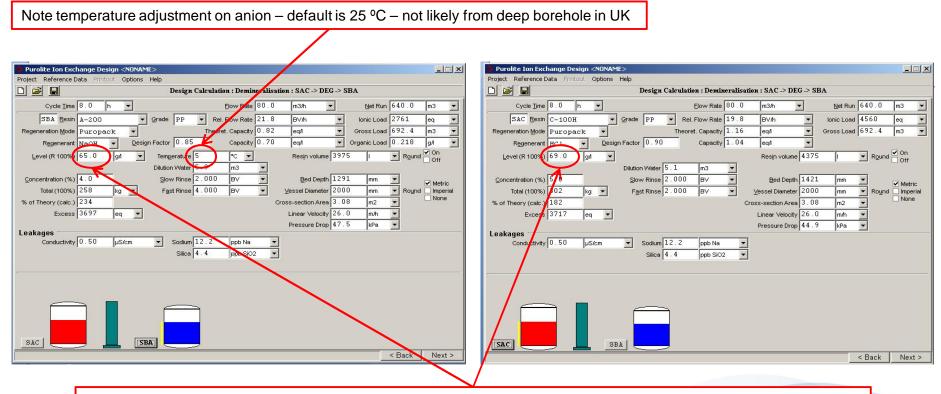

🐧 Purolite Ion Exchange Design <noname></noname>		
Project Reference Data Printout Options Help		
Design Calculation : Demineralisation : SAC -> DEG -> SBA		
Cycle Iine 8.0 h 💌 Elow Rate 80.0 m3/h 💌 Net Ru	n 640.0	m3 🔻
	d 4460	eq ▼ m3 ▼
	d 676.6	m3 💌
Regenerant HC1 💌 Design Factor 0.90 Capacity 0.94 eq/l 💌		
Level (R 100%) 55.0 g/ 💌 Resin volume 4750 l	Round	On Off
Dilution Water 4 . 4 m3		
Concentration (%) 5.0 Slow Rinse 3.000 BV ▼ Bed Depth 1543 mm	-	Metric
Total (100%) 261 kg ▼ Fast Rinse 0.000 BV ▼ Vessel Diameter 2000 mm	▼ Round	Imperial
% of Theory (calc.) 161 Cross-section Area 3.08 m2	-	None
Excess 2703 eq 💌 Linear Velocity 26.0 m/h	-	
Pressure Drop 48.8 kPa	•	
Leakages Conductivity 0.50 µS/cm V Sodium 15.5 ppb Na V		
Silica 4.2 ppb SiO2 💌		
SAC SBA		
	< Back	Next >

Cycle Time 8.0 h	-	Flow Rate 80.0) m3/h 🔻	Net Run 640.0	m3 🔻
SBA Resin A-200	Grade PP	✓ Rel. Flow Rate 19.8		Ionic Load 2732	
generation Mode Puropac		Theoret. Capacity 0.75		Gross Load 684.9	m3 V
Regenerant NaOH	K ▲ Design Factor 0.8			Organic Load 0.198	g/ 👻
Level (R 100%) 50.0	g/ Temperature Dilution Water	25 °C 🕶	Resin volume 432		
oncentration (%) 4.0	Slow Rinse		Bed Depth 1409	mm 💌	Metric
Total (100%) 216	kg 💌 F <u>a</u> st Rinse	e 4.000 BV 💌	Vessel Diameter 2000	mm 💌 Round	I 🗌 Imperial
of Theory (calc.) 198			Cross-section Area 3.00	3 m2 💌	None
Excess 2673	eq 💌		Linear Velocity 26 . (l m/n 💌	
			Pressure Drop 51.3	kPa 🔻	
Conductivity 0.50	µS/cm ▼ Sodium	n 15.5 ppb Na	-1		1
Conductivity 10:00	Contraction and a second	a 4.2 ppb SiO2			
	Shice	ALTER INNOUS			
					<u></u> }
\sim					

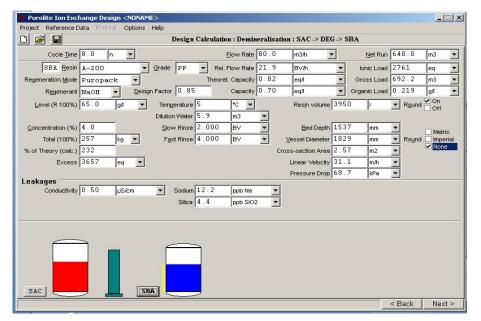
🄹 Purolite Ion Exc	ange Design <no< th=""><th>NAME></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_ 🗆 🗙</th></no<>	NAME>							_ 🗆 🗙
Project Reference D	ata Printout Optic	ons Help							
		Design Cal	culation : Demir	eralisati	on : SAC -> DEC	5-> SI	BA		
Cycle <u>T</u> ime	8.0 h 🔻		Elow Rate	80.0	m3/h	·	<u>N</u> et Run	640.0	m3 🔻
SAC Resin	C-100H	▼ Grade PP ▼	Rel. Flow Rate	17.9	B∨ <i>l</i> h	-	lonic Load	4574	eq 💌
Regeneration Mode	Puropack 💌	•	Theoret. Capacity	1.05	eq/	-	Gross Load	694.8	m3 🔻
Regenerant	нсі 🔹 🕻	esign Factor 0.90	Capacity	0.95	eqA	-			
Level (R 100%)	55.0 g/l	•			Resin volume	4850	1	Round	✓ On Off
		Dilution Water 4.	5 m3	-					
Concentration (%)	5.0	Slow Rinse 2.	000 BV	-	<u>B</u> ed Depth	1575	mm	•	Metric
Total (100%)	267 kg 💌	Fast Rinse 2.	000 BV	•	⊻essel Diameter	2000	mm	▼ Round	Imperial
% of Theory (calc.)	160			Cr	oss-section Area	3.08	m2	•	None
Excess	2740 eq	-			Linear Velocity	26.0	m/h	-	
					Pressure Drop	49.8	kPa	•	
Leakages Conductivity	0.50 µS/cm	▼ Sodium 15	. 5 ppb Na	-					
oonaaourny	Therein	Silica 4.	CONTRACT DESCRIPTION OF A DESCRIPTIONO OF A DESCRIPTION O	2 -					
		onou ju	- 1000 0101						
e									
SAC		SBA							
								< Back	Next >

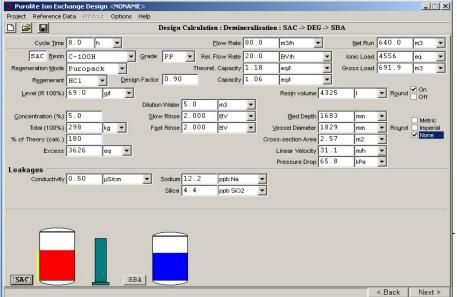


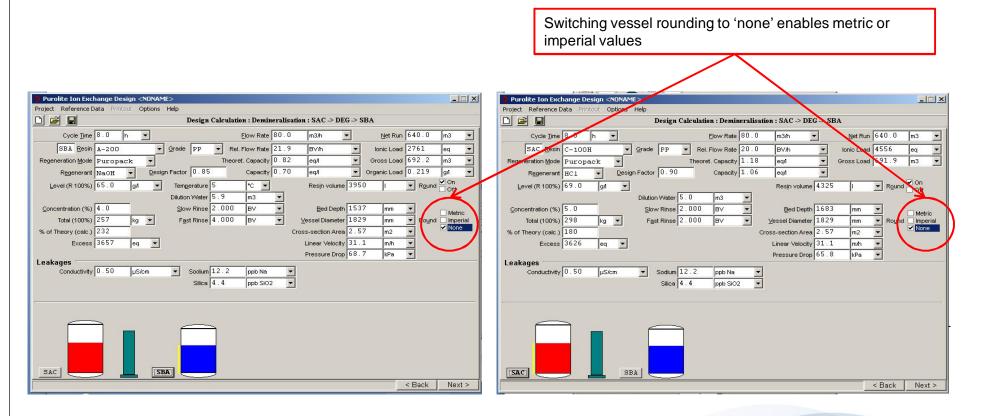
U 🖻 🔲				Design	Calcu	llation : D	eminera	lisatio	n : SAC -> DE	G-> S.	ва		
Cycle <u>T</u> ime	8.0	h 💌				Elow	Rate 80	. 0	m3/h	-	<u>N</u> et Run	640.0	m3 💽
SBA Resin	A-200		- Grade	PP	-	Rel. Flow	Rate 21	. 8	BV/h	-	lonic Load	2761	eq
Regeneration <u>M</u> ode	Puropa				100	neoret. Cap	2020220		eq/l	•	Gross Load		m3 💌
R <u>e</u> generant	NaOH	▼ De	sign Facto	r 0.85		Сар	acity 0.	70	eq/l	•	Organic Load		g/l 💌
Level (R 100%)	65.0	g/	- Terr	perature	5	•C	•		Resin volume	3975	5 1	▼ Roun	d On
			Diluti	on Water	5.9	m3	-]					
Concentration (%)	4.0	_	Slo	w Rinse	2.00	00 BV	-	I	<u>B</u> ed Depth	1291	. mm	-	Metric:
Total (100%)	258	kg 💌	F	st Rinse	4.00	00 BV	-	I	<u>∨</u> essel Diameter	2000) mm	▼ Ro <u>u</u> n	d 🗌 Imperial
% of Theory (calc.)	234							Cro	ss-section Area	3.08	3 m2	-	None
Excess	3697	eq 💌	1						Linear Velocity	26.0) m/h	-	
									Pressure Drop	47.5	kPa	-	
eakages Conductivity	0 50	µS/cm		Sodium	12 1	2 ppb	NI-						
Conductivity	0.50	psicm	<u> </u>	Silica			SiO2						
				Silica	4.4	lbbc	5102	-					
-	-												
			ſ										
			1										

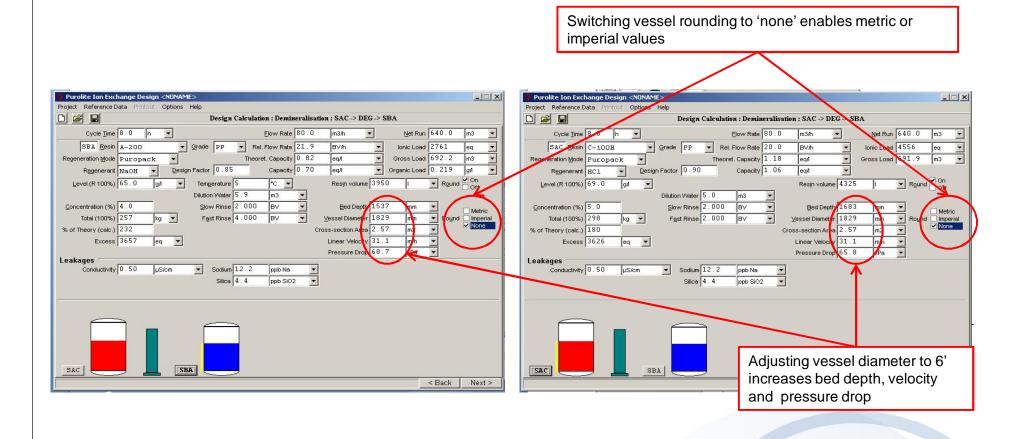

🔮 Purolite Ion Exchange Design <noname></noname>	
Project Reference Data Printout Options Help	
🗋 🚅 📕 Design Calculation : Demineralisa	ation : SAC -> DEG -> SBA
Cycle <u>Time</u> 8.0 h	0 m3/h 💌 Net Run 640.0 m3 💌
SAC Resin C-100H Grade PP Rel. Flow Rate 19.8	BV/h 💌 Ionic Load 4560 eq 💌
Regeneration Mode Puropack Theoret. Capacity 1.16	o eq/l ▼ Gross Load 692.4 m3 ▼
Regenerant HC1 V Design Factor 0.90 Capacity 1.04	
Level (R 100%) 69.0 g/ 💌	Resin volume 4375 I 💌 Round 🗹 On
Dilution Water 5.1 m3 💌	
Concentration (%) 5.0 Slow Rinse 2.000 BV	Bed Depth 1421 mm
Total (100%) 302 kg 💌 Fast Rinse 2.000 BV 💌	⊻essel Diameter 2000 mm 💌 Round 🗌 Imperial
% of Theory (calc.) 182	Cross-section Area 3.08 m2 None
Excess 3717 eq 💌	Linear Velocity 26 . 0 m/n 💌
•	Pressure Drop 44.9 kPa 💌
Leakages	-
Conductivity 0.50 µS/cm Sodium 12.2 ppb Na	듹
Silica 4 . 4 ppb SiO2	<u>-</u>
SAC SBA	
	< Back Next >

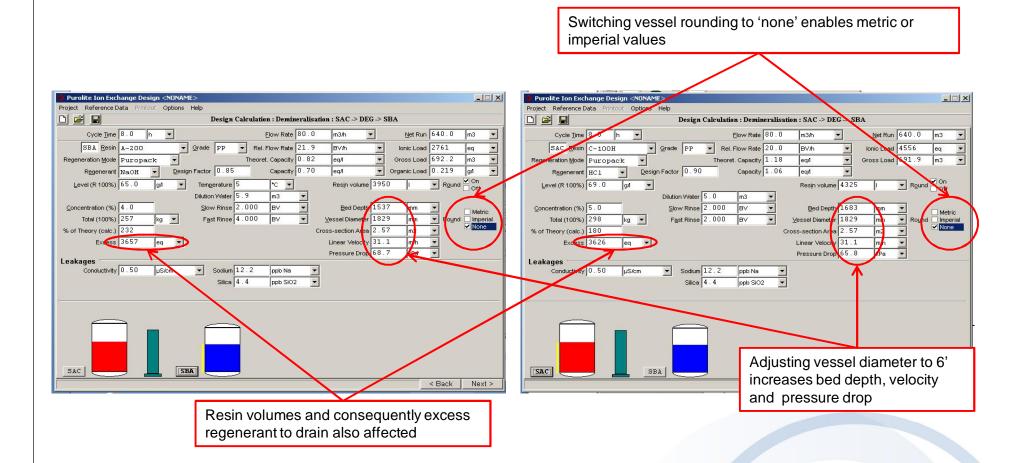
Regen. levels set to give approximately neutral effluent and manage the small quantity of organics in the influent water

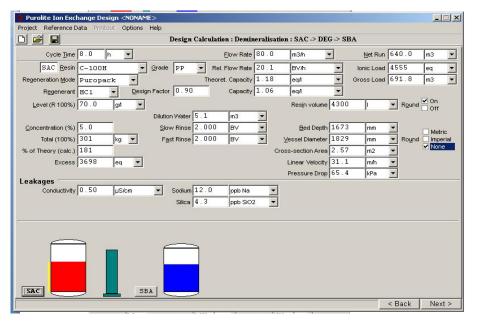



Regen. levels set to give approximately neutral effluent and manage the small quantity of organics in the influent water


- Plant currently modeled assuming metric measurements
- In practice, vessels often sized on imperial measurements
- To minimise CAPEX, there is often merit in reducing vessel diameter, whilst factoring effect on bed depth and pressure drop
- Vessel dimensions influence distribution/flow and thus performance
- Watch out for changes to effluent levels if attempting to achieve neutral effluent !







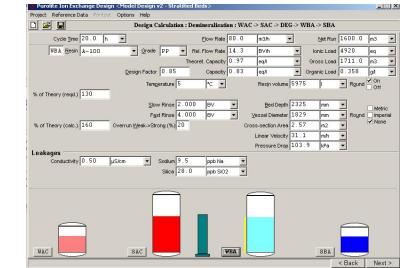
O SCI

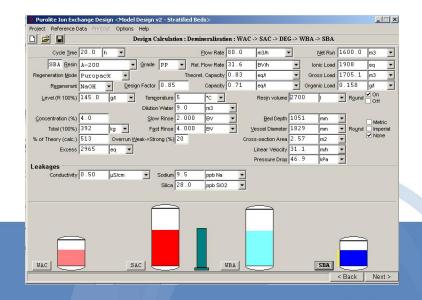
The Design – Adjusting for Neutral Effluent

Cycle <u>T</u> ime	8.0	1 •				Elow Rate	80.0	m3/h	-	Net Run	64	0.0	m3	1
SBA Resin			Grade	PP	-	Rel. Flow Rate			-	lonic Load	-		leq	1
Regeneration Mode	State States	ek 🔹	1 -	1	Tł	neoret. Capacity			-	Gross Load	-		m3	Ī
Regenerant	NaOH	▼ Desi	gn Factor	0.85		Capacity			-	Organic Load	0.	220	g/l	
Level (R 100%)	66.0	 g/ •	Temp	erature	5	•C ▼		Resin volume	392	5	-	Round	✓ On □ Off	
			Dilution	n Water	6.0	m3	-					. 25 - 6	01	
Concentration (%)	4.0		Slov	v Rinse	2.01	00 BV	•	Bed Depth	152	7 mm	-		Metri	
Total (100%)	259	kg 💌	F <u>a</u> s	t Rinse	4.01	00 BV	-	<u>∨</u> essel Diameter	182	9 mm	-	Round	Impe	ria
6 of Theory (calc.)	235							Cross-section Area	2.5	7 m2	-		✓ None	9
Excess	3716	eq 💌						Linear Velocity	31.	1 m/h	-			
								Pressure Drop	68.	2 kPa	-			
eakages Conductivity	0.50	µS/cm	-	Sodium	12.1	D ppb Na		7						
				Silica		ppb SiO	2	1						
							-	-						
	Ξ.	-	e		7									

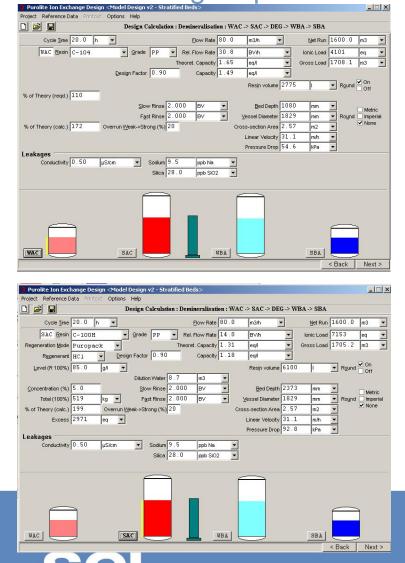
Outputs

Purolite Ion Exchange Design <model design<="" p=""></model>		
Project Reference Data Printout Options He	Design Calculation : Demineralisation : SAC -> DEG -> SBA	
Cycle <u>T</u> ime 8.0 h	Elow Rate 80.0 m3/h 💌 Net Ru	un 640.0 m3 💌
SBA Resin A-200 🗾 🤤	rade PP 💌 Rel. Flow Rate 22.0 BV/h 💌 Ionic Los	ad 2750 eq 💌
Regeneration Mode Puropack 🔹	Theoret. Capacity 0.82 eqn 💌 Gross Loa	ad 689.2 m3 💌
Regenerant Project Reference Data		
Level (R 100%) <u>C</u> ustomer	SCI	
Concentration (%)	Address	
Total (100%) <u>S</u> ales Person	DH	
% of Theory (calc.) Engineering Company (OEM) Excess	OEM	
	lgent	
Leakages ConductivityOperator	Operator	
Design Calculation <u>N</u> o.	No 1 Coge NONAME	Current Date 16-07-2012
Language	English •	Cancel
SAC SBA		
		< Back Finish




Outputs

Design generated in MS Word, e.g. here



Other Design Options – Stratified Bed

OPEX Comparison – Packed Bed vs Stratified Bed

Operating costs per m³ treated water produced:

- Counter current packed bed SAC DG SBA £0.38
- Stratified WAC SAC DG WBA SBA £0.24
 - Approximate 37 % reduction in cost

Costs based on chemical cost of £105/T of 32% HCl and £260/T of 46% NaOH Information for costing kindly provided by **Watercare**

Questions ?

www.soci.org