Galápagos

First selective JAK1 inhibitor: GLPG0634 from hit to Proof of Concept

Dr. Christel Menet Project Director, Medicinal Chemistry

Protein Kinase 2012 May 2012

Solo and a second

GLPG0634 The 1st selective JAK1 inhibitor

- Introduction
- Target identification
- Hit finding to PCC
- Clinical development
 - Phase I
 - Phase II Proof of Concept

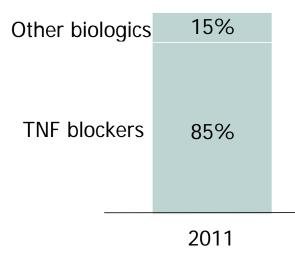
Rheumatoid arthritis (RA) A global health issue

Disease facts

- Inflammation & destruction of joints
- Affects ~1% of population
- Typically diagnosed age 40-60
- 2-3 times more prevalent in women

Current treatments

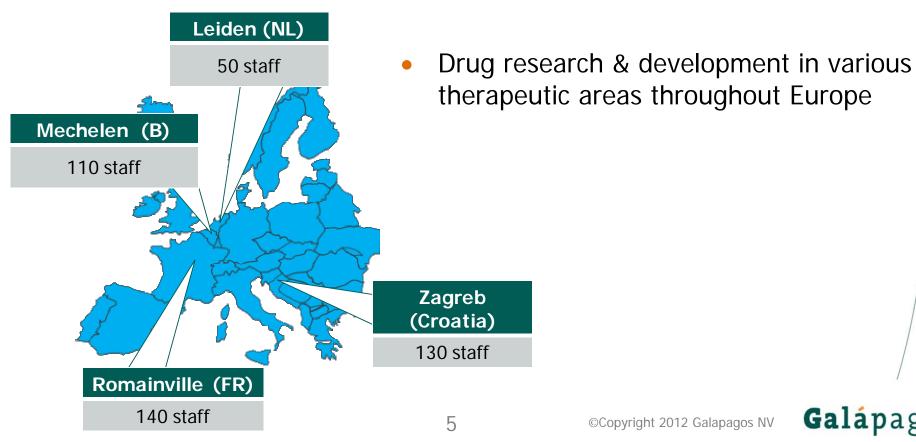
- First line: steroids, methotrexate (MTX)
- Second line: disease-modifying biologics
 - > TNFα blockers (Enbrel[®], Remicade[®], Humira[®])
 - IL-6 (Actemra[®]), B & T-cells (Rituxan[®], Orencia[®])
 - effective in 50-60% of MTX non-responders

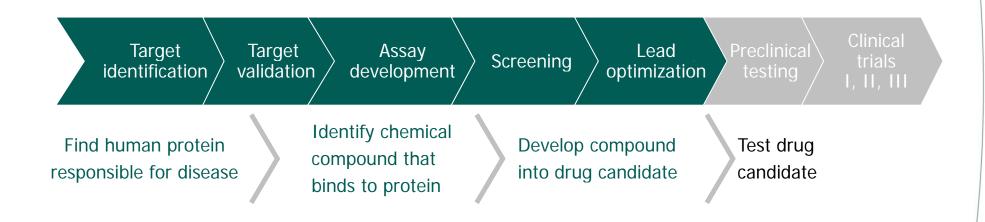


New wave of RA oral therapies

Small molecule drugs in development for RA

- Easier to use (oral administration)
- Lower cost of goods
- Comparable efficacy & safety profile to biologics

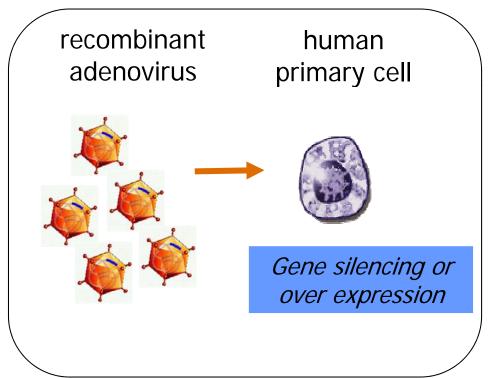




Galapagos: a leader in European biotech

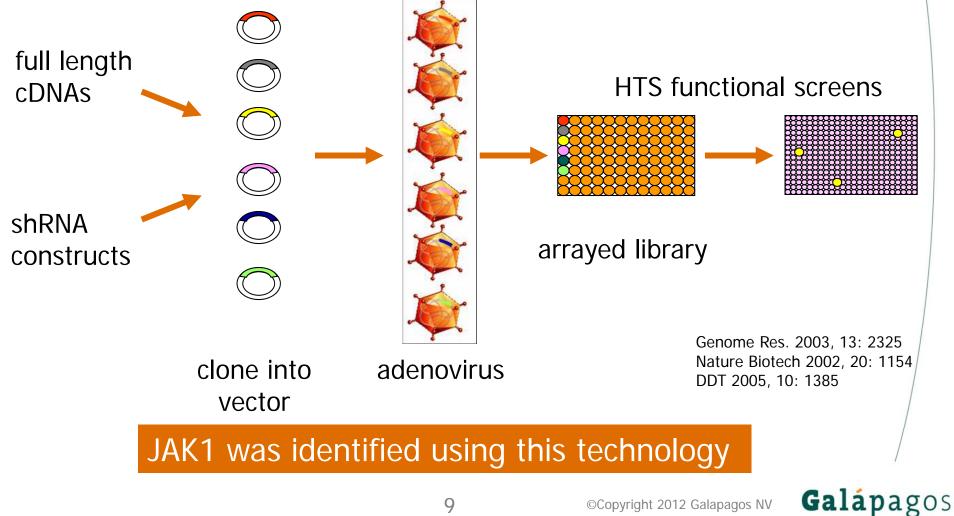
- One of the largest biotech pipelines in Europe
- > 800 staff in pharmacology/biology, chemistry and drug development
- 400 staff fee-for-service organization in UK: discovery research activities

Selapagos approach From protein to drug



SGLPG0634 The 1st selective JAK1 inhibitor

- Introduction
- Target identification
- Hit finding to PCC
- Clinical development
 - Phase I
 - Phase II Proof of Concept



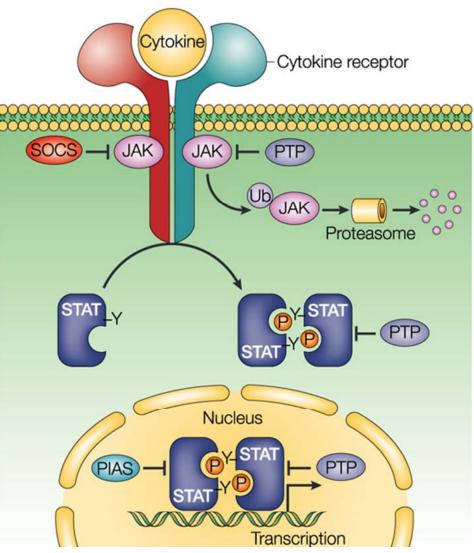
Technology Adenoviral technology

- Changes in cell health monitored via functional readouts
- 20-25 validated targets per screen
- IP on target and compound

Technology Arrayed adenoviral libraries for KI and KD

©Copyright 2012 Galapagos NV

🥪 JAK family



- 4 family members: JAK1, JAK2, JAK3, TYK2
- Cytoplasmic tyrosine kinases
- Serve as intracellular signal transducers for many cytokines, hormones
 - ➢ interleukins, interferons, EPO, GH, OSM, LIF,...

JAK	Cytokines	Phenotype of mouse knockout
JAK1	Gp130 cytokine, type I IFN, IFN- γ , and β c cytokines, γ c cytokines	Perinatally lethal; neurological defects and SCID
JAK2	EPO, TPO, PRL, GH, IFN-γ and IL- 12	Embryonically lethal; defective erythropoiesis
JAK3	yc cytokines	SCID
TYK2	Gp130 cytokines, typeI IFNs, IL-12 and IL-23	Modest viral susceptibility, reduced IL- 12 response and resistance to arthritis induction

JAK-STAT signalling

Ke Shuai & Bin Liu, Nature Reviews Immunology 3, 900-911

>>> JAK inhibitors in development for RA

Three JAK inhibitors have shown clinical efficacy in RA

- rapid onset, 30-50% improvement in ACR20 over placebo
- tofacitinib and VX-509 administered twice-daily

RA clinical candidate	JAK inhibition profile	Phase
tofacitinib	JAK3>JAK1>JAK2	Filed
INCB28050 baricitinib	JAK1=JAK2	Phase II
VX-509	JAK3	Phase II

Different selectivity profile = opportunity to differentiate JAK inhibitors

Balancing safety and efficacy Lessons from 24 weeks of *tofacitinib* in Phase II

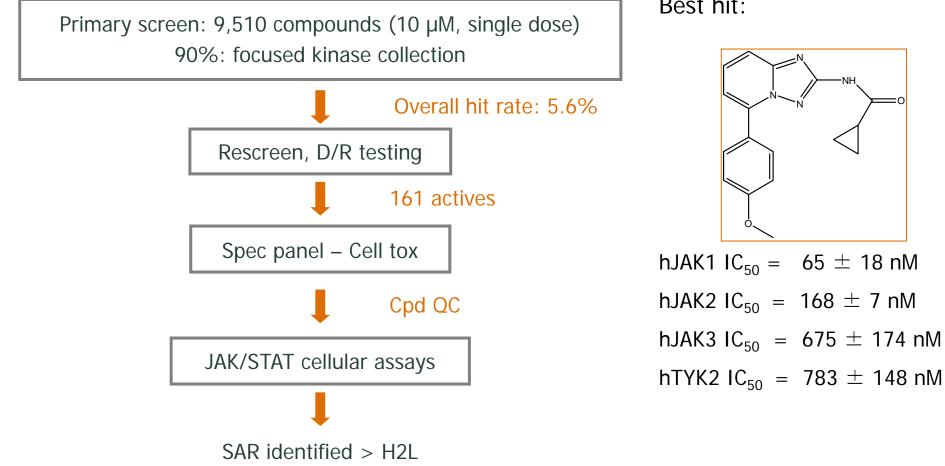
		placebo	5 mg bid	10 mg bid	15 mg bi	d
	N =	59	49	61	57	
ACR20 (%)		25.4	51.0	65.6	66.7	
ACR50 (%)		10.2	34.7	44.3	54.4	
ACR70 (%)		6.8	20.4	37.7	33.3	

tofacitinib 24-week Phase II study

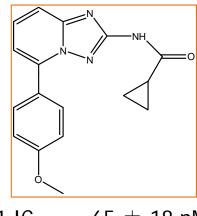
- significant, dose-dependent improvements in ACR20/50/70 response rates¹
- dose selection (5 mg, 10 mg bid) for Phase III studies based on efficacy data and safety: incidence of (severe) anemia, at doses of 10 mg bid and higher²
- > anemia is JAK2-driven side effect, apparent within 2 weeks¹

Potential to increase efficacy by minimizing JAK2 side effects

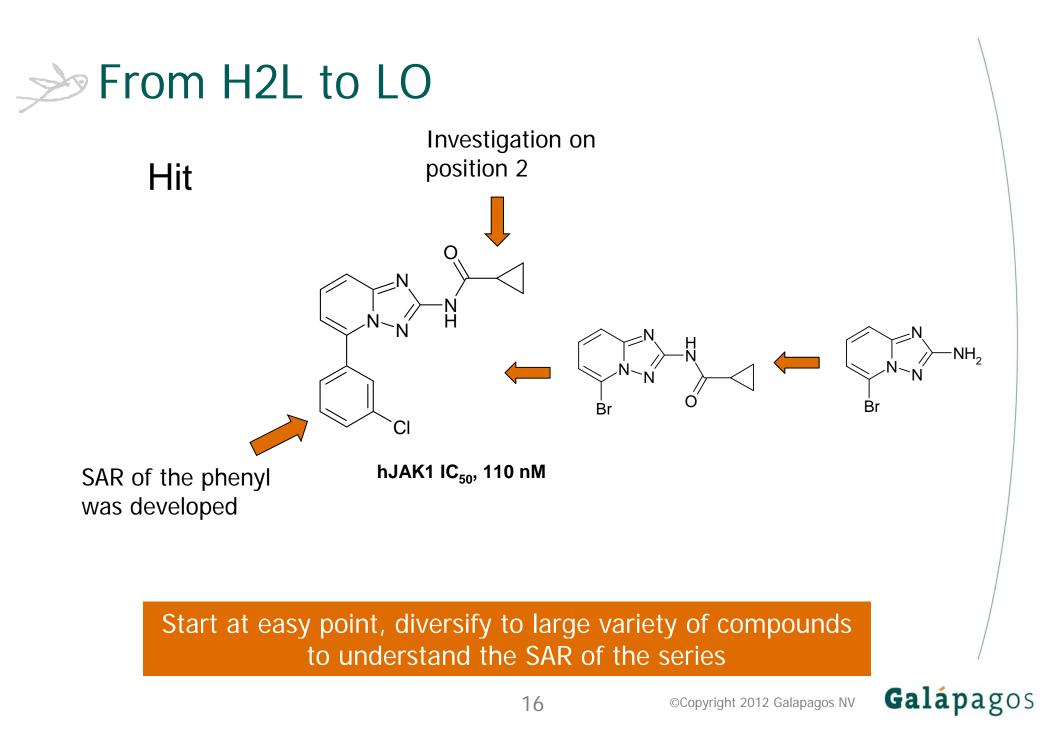
Fleischmann et al/Kremer et al. ACR presentation (2009).
Riese et al. Best Pract & Res Clin Rheum 24 (2010) 513-526.

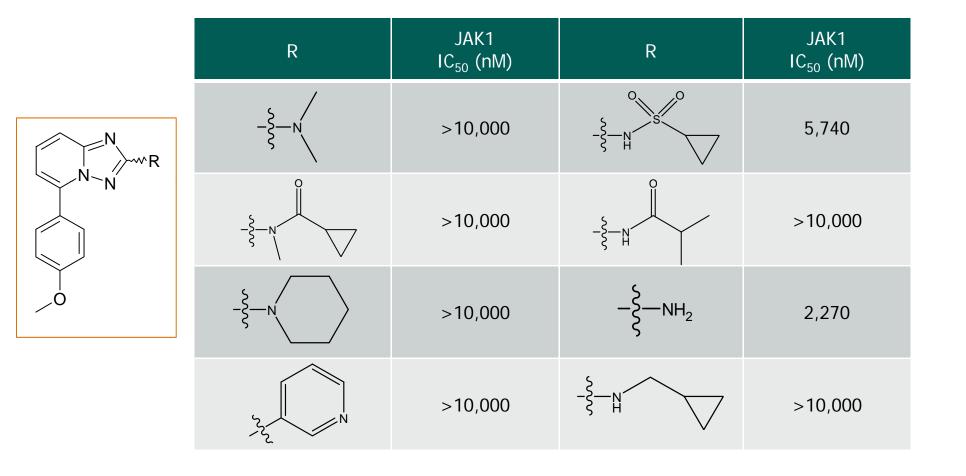

SGLPG0634 The 1st selective JAK1 inhibitor

- Introduction
- Target identification
- Hit finding to PCC
- Clinical development
 - Phase I
 - Phase II Proof of Concept



Hit finding overview


JAK1 biochemical assay

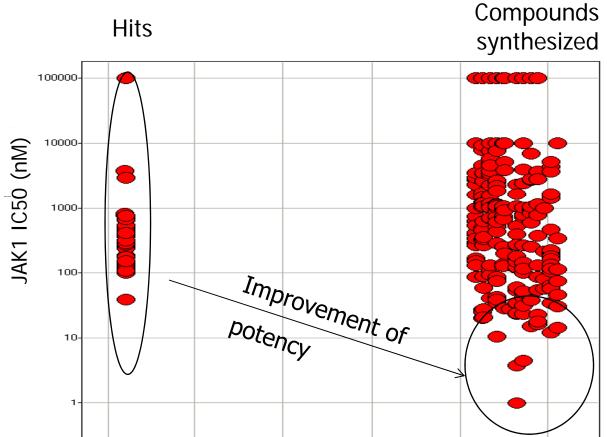

Best hit:

hJAK1 IC₅₀ = $65 \pm 18 \text{ nM}$ hJAK2 IC_{50}~=~168~\pm~7~nM hJAK3 IC_{50}~=~675~\pm~174~nM

Exploration in position 2

Replacement of the cyclopropyl-amide on the 2-position was not tolerated

Phenyl substitution improvement

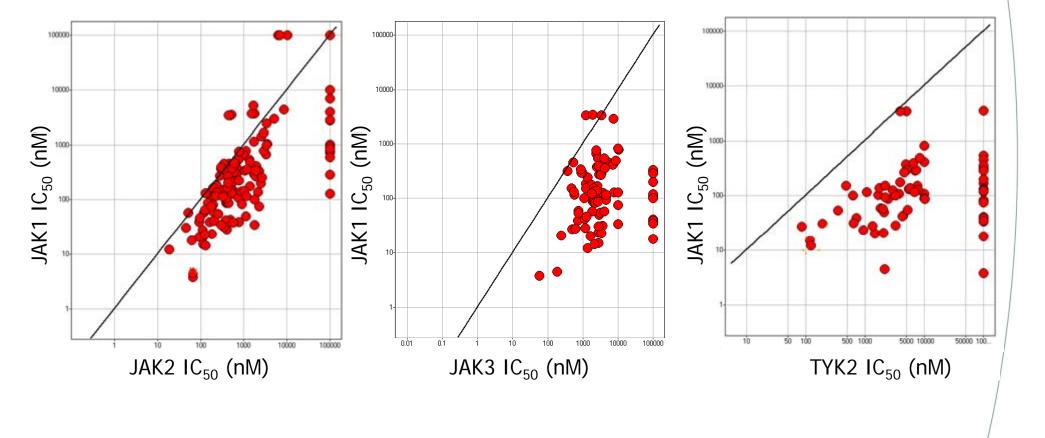

O

Substitution R	JAK1 IC ₅₀ (nM)	JAK2 IC ₅₀ (nM)	JAK3 IC ₅₀ (nM)	TYK2 IC ₅₀ (nM)
	180	564	1,790	1,767
	361	925	1,142	3,877
G	110	188	1,155	587
	65	168	675	783
N N N N N N N N N N N N N N N N N N N	528	980	2,857	7,049

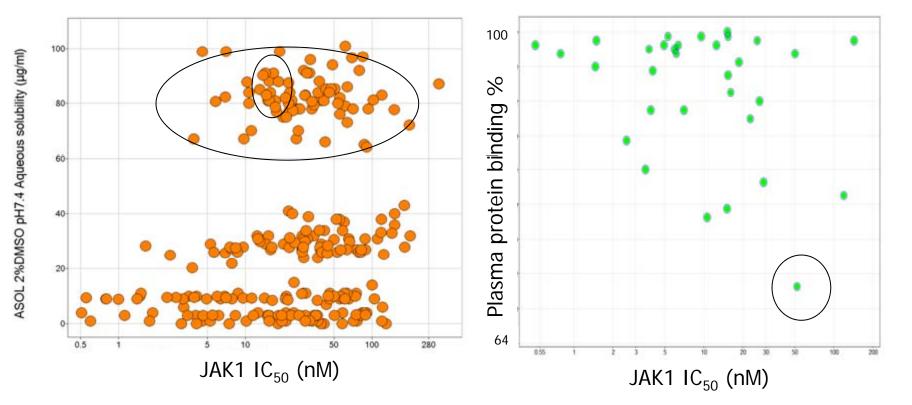
The *para*-position of the phenyl was tolerant to wide range of substitutions

©Copyright 2012 Galapagos NV

SAR Hits



Drive towards potent JAK1 compounds


Lead optimisation Biochemical selectivity

The series was made selective towards JAK1

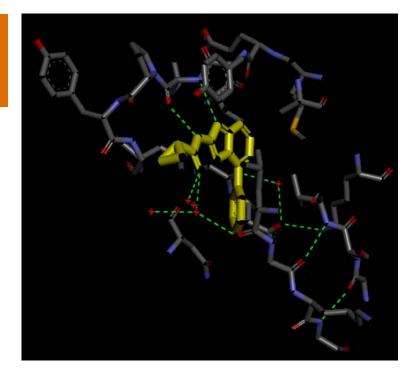
©Copyright 2012 Galapagos NV

Lead optimization ADME analysis

ADME analysis of main series led to sub-series: good solubility, low PPB Further optimization resulted in GLPG0634

21

©Copyright 2012 Galapagos NV



Crystal structure of JAK2

Triazolo-pyridine series docked in JAK2 crystal structure

Nitrogen atom of the scaffold and of cyclopropylamide of the series interact with the hinge

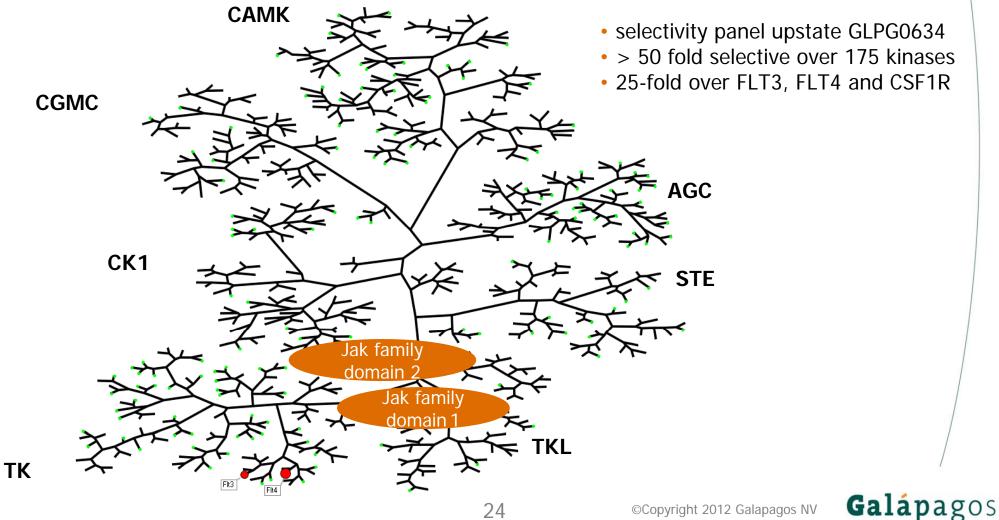
Cyclopropyl group locates in favorable hydrophobic pocket

SLPG0634 inhibits JAK1 JAK selectivity

Potencies of compounds in biochemical assays*

Compound	JAK1 IC _{50,} nM	JAK2 IC _{50,} nM	JAK3 IC _{50,} nM	TYK2 IC _{50,} nM
GLPG0634	10	28	810	116
tofacitinib	1.3	1.9	0.2	23
INCB28050	5.9	5.7	>400	53

* Biochemical assays by fluorescence read-out show higher potencies than prior radioactive assays.

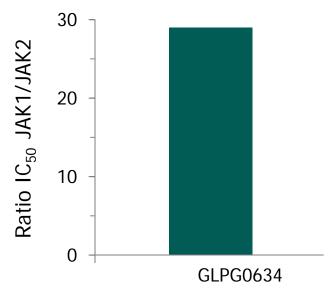

JAK1 selectivity ratios of compounds in biochemical assays

Compound	JAK2/JAK1 ratio	JAK3/JAK1 ratio	TYK2/JAK1 ratio
GLPG0634	2.8	81	11.6
tofacitinib	1.5	0.2	17.7
INCB28050	1.0	60	9.0

GLPG0634 shows good selectivity over JAK3 and TYK2

GLPG0634 inhibits JAK1 High selectivity towards 150 kinase-panel

24


GLPG0634 inhibits JAK1 High selectivity for JAK1 over JAK2 in cellular assays

JAKs involved	Cell type	Trigger	Read-out	pIC ₅₀ ± SEM	IC ₅₀ (nM)	n
JAK1-JAK3	THP-1	IL-4	pSTAT6	6.75 ± 0.06	154; 203	2
JAK1-JAK3	NK-92	IL-2	pSTAT5	6.46 ± 0.12	148; 757; 367	3
TYK2-JAK1	U2OS	IFNaB2	pSTAT1	6.33 ± 0.03	494;436	2
JAK1-JAK2	HeLa	OSM	STAT1 reporter	6.01 ± 0.07	1,045	4
JAK1-JAK2	U2OS	IFNγ	pSTAT1	5.45	3,364	1
JAK2	TF-1	IL-3	pSTAT5	5.45	3,524	1
JAK2	BaF3	IL-3	proliferation	$5.34~\pm~0.04$	4,546	3
JAK2	UT7-EPO	EPO	pSTAT5	>5	>10,000	2
JAK2	22Rv1	PRL	pSTAT5	>5	>10,000	2

Section of the selectivity for JAK1 over JAK2 in human blood

Preclinical JAK profiling in human whole blood assay

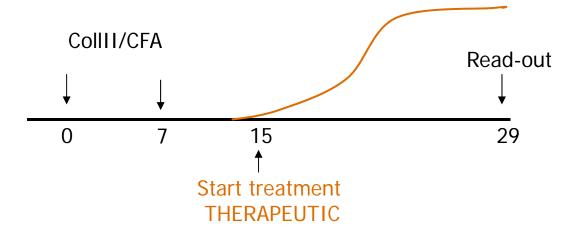
	Assay	IC ₅₀ (nM)		
JAK1	IL6/pSTAT1	600		
JAK2	GM-CSF/pSTAT5	17,500		
rhIL-6: 10 ng/mL; pSTAT1 in CD4+ leucocytes by FACS rhGM-CSF: 20 pg/mL; pSTAT5 in CD33+ leucocytes				
			/	

Galápagos

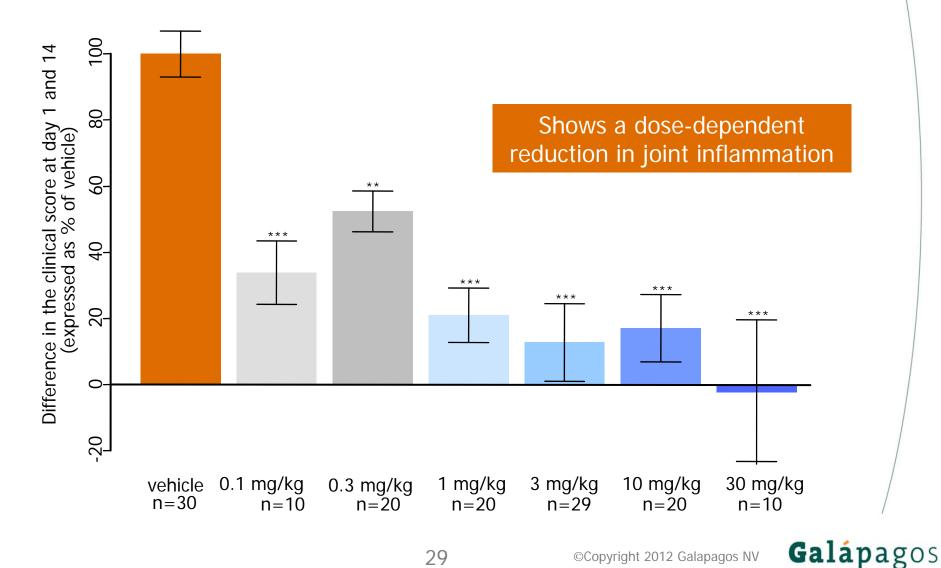
26

Animal pharmacokinetics for GLPG0634

Vehicle MC 0.5% (v/v)		C _{max} (ng/mL)	Tmax (h)	AUC _{0-24h} (ng.h/mL)	T _{1/2} (h)	Cl (L/h/kg)	V _{ss} (L/kg)	F (%)
rot	IV 1 mg/kg	1,407		739	1.6	1.4	1.8	
rat	PO 5 mg/kg	310	2.2	1,681	3.9			45
doa	IV 1 mg/kg	1,143		4,098	7.5	0.25	1.7	
dog	PO 5 mg/kg	1,807	1.5	13,908	5.2			67


GLPG0634 was well exposed in rodent and non-rodent species using 0.5% methylcellulose as vehicle

27



Collagen-induced arthritis rat model

- Injection of hererologous type II collagen in susceptible rat strain
- Boost injection with Coll II at day 0 and 7
- Treatment day 15
- Read-out until day 29

Therapeutic CIA rat model GLPG0634

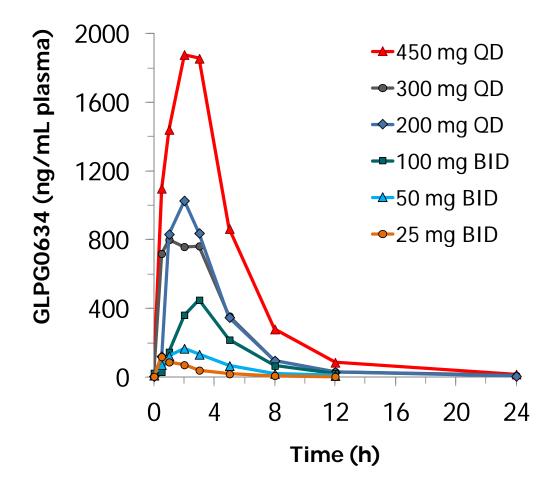
©Copyright 2012 Galapagos NV

Conclusion lead optimization

- GLPG0634 is a selective JAK1 inhibitor
 - > JAK1 biochemical potency $IC_{50} \sim 10 \text{ nM}$
 - human whole blood assay and cellular models show selectivity for JAK1 over JAK2
- Highly potent in therapeutic CIA animal model

SGLPG0634 The 1st selective JAK1 inhibitor

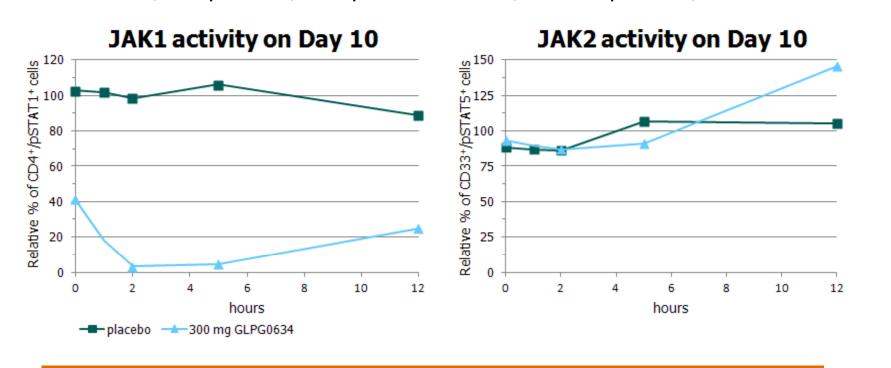
- Introduction
- Target identification
- Hit finding to PCC
- Clinical development
 - Phase I
 - Phase II Proof of Concept



Phase I Trial design and safety

- Ascending single dosing and Multiple dosing
 - 48 healthy volunteers: 6 subjects per groups received GLPG0634 and 2 placebo
- Safety: adverse events were mild and transient in nature.
 - headaches and abdominal discomfort (including loose stools) were reported in more than one subject, over all dose groups and including placebo
 - > no changes in hematology parameters (including reticulocytes)
 - no changes in blood biochemistry (including cholesterol)
 - > no signal in cardiovascular safety or vital signs

SGLPG0634 clinical pharmacokinetics Healthy volunteers


- Dose proportional PK
- Low variability (CV < 20%)
- Half life: 5-8 hours
- No food effect on capsule formulation
- Plasma exposure ≥ 50 mg
 - exceeds effective exposure in rat CIA

Galápagos

 \succ exceeds cellular IC₅₀

SLPG0634 has a unique JAK profile

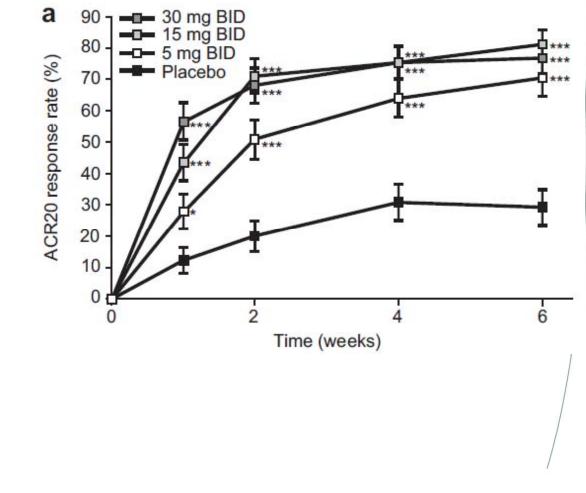
JAK1 and JAK2 measured in whole blood from Phase I healthy volunteers > JAK1 (IL-6/pSTAT1) compared to JAK2 (GM-CSF/pSTAT5)

GLPG0634 is a selective JAK1 inhibitor

Conclusion Phase I

- GLPG0634 is well tolerated in the pharmacological active dose range, with no effects on hematology or other safety markers following 10 days dosing in healthy volunteers
- Good oral pharmacokinetics and biomarker PK/PD support a once-daily oral dosing regimen
- Results support the initiation of a Phase II trial in rheumatoid arthritis patients

SGLPG0634 The 1st selective JAK1 inhibitor


- Introduction
- Target identification
- Hit finding to PCC
- Clinical development
 - Phase I
 - Phase II Proof of Concept

Phase II: Why only a 4 week trial? tofacitinib monotherapy in active RA

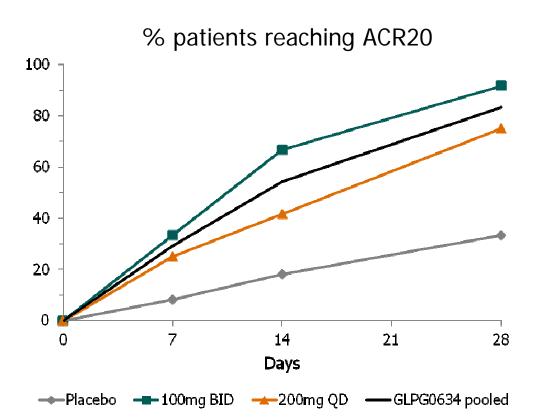
37

- Rheumatoid arthritis patients failing prior DMARD (n=264)
- Dose dependent efficacy
 - short-term efficacy (4 weeks) is maintained long-term (2 year)
 - Safety and tolerability
 - infections
 - lipid elevations
 - transaminase increased
 - > anemia
 - neutropenia

Scheme GLPG0634 Phase II PoC Trial design

- Randomized, double-blind, placebo-controlled study in Moldova
- 36 RA patients with insufficient response to MTX, naïve to biologics
 - 4 week treatment, oral dosing
 - > 200 mg QD vs. 100 mg BID vs. placebo
 - all on MTX (mean: 12 mg/week), with stable low-dose steroids/NSAIDs
 - patients randomized to 12 per group
 - similar demographics (mean age 49 years, 11 females per group)
- All 36 patients completed 4 weeks of treatment

Designed to give rapid evaluation of efficacy at high dose


Baseline patient characteristics

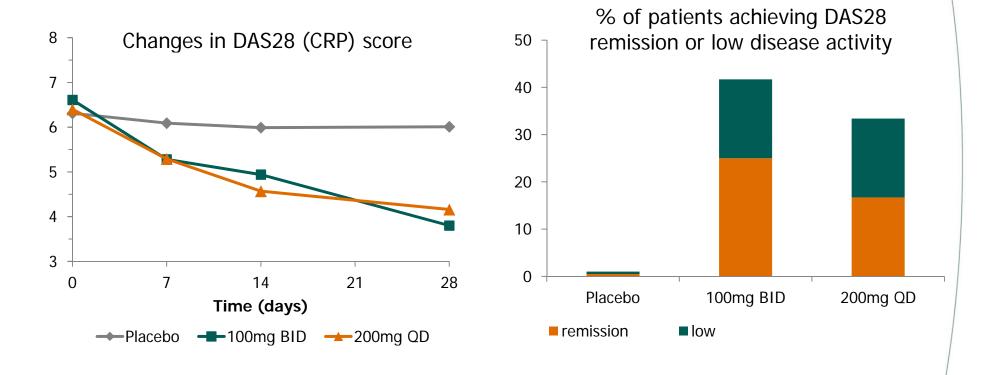
	Placebo n=12	GLPG0634 100 mg BID n=12	GLPG0634 200 mg QD n=12
RA diagnosis (years)	5.6	9.7	7.5
Use of steroids	2	4	4
Use of NSAIDS	11	10	6
CRP at baseline (mg/L)	34.9	21.3	40.5
DAS28	6.3	6.7	6.4

SLPG0634 efficacy: ACR20

- Achieved primary endpoint
- ACR20 scores at Day 28: 42-58% improvement over placebo

GLPG0634 is highly efficacious with rapid onset of action

©Copyright 2012 Galapagos NV

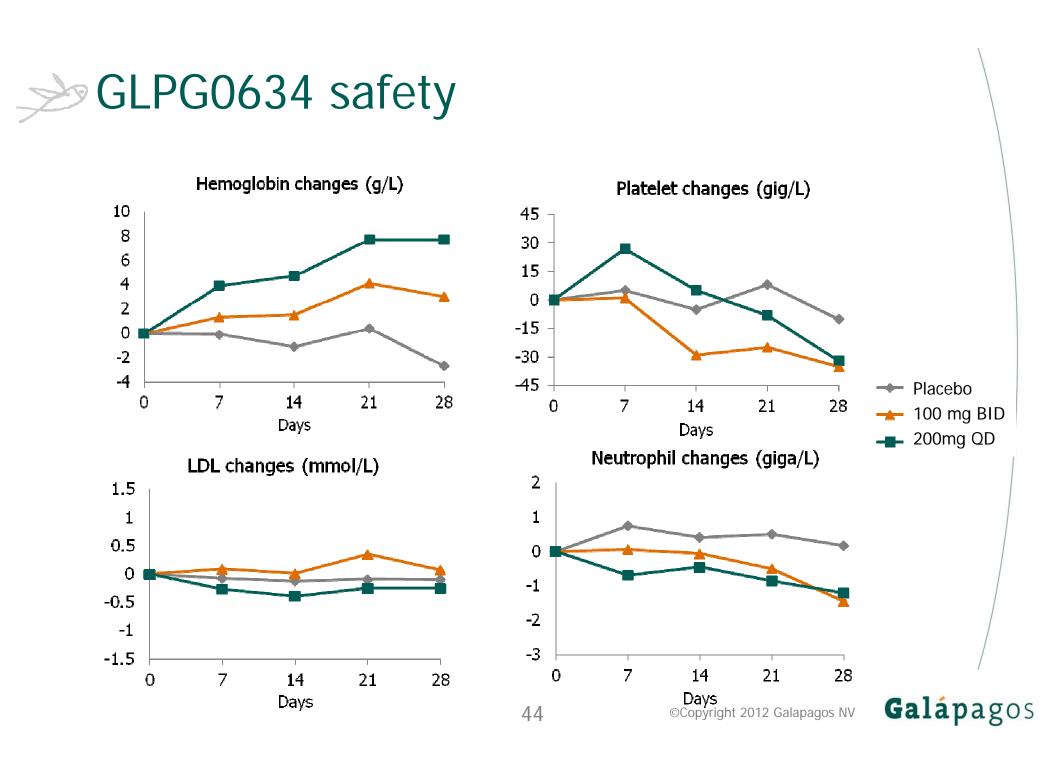

GLPG0634 efficacy: C-reactive protein

41

- **CRP**: inflammation • biomarker
- GLPG0634 treatment ٠ induces a rapid and lasting decrease in serum CRP to near-normal levels

Changes in serum CRP (mg/L) 60 50 40 30 20 10 0 7 14 21 28 0 Days ---Placebo GLPG0634 is highly efficacious with rapid onset of action

SLPG0634 efficacy DAS28



GLPG0634 is highly efficacious with rapid onset of action

42

SLPG0634 safety findings

Any treatment-related AE	Placebo n=12	GLPG0634 100 mg BID n=12	GLPG0634 200 mg QD n=12
None	8	10	9
Nausea		2	2
Abdominal discomfort			1
Abdominal pain		1	
Asthenia (weakness)	2		
Fatigue	1		
Dysgeusia (abnormal taste)			1
Headache	1	1	
Somnolence (drowsiness)			1

Summary GLPG0634 safety summary

- Safe and well-tolerated
 - no SAEs on GLPG0634 treatment
 - Few patients reported side-effects
 - neither anemia nor increase in LDL
 - modest decrease in neutrophils and platelets
 - no effects on blood pressure

Conclusion GLPG0634 a potential best in class

- Hit finding to PCC
 - Triazolopyridine identified as JAK1 inhibitors by HTS screening
 - Identification of subseries that offer a balance of ADME properties and potency
- GLPG0634 has a unique profile
 - a selective JAK1 inhibitor in biological systems
 - active in preclinical models of arthritis
 - well tolerated in a wide dose range in Phase I
 - > PK/PD profile consistent with once daily dosing
- Proof-of-Concept in rheumatoid arthritis patients achieved
 - 4 weeks treatment at 200 mg/day on top of failing MTX

46

THANK YOU

Questions?

