

SCI Conference "Science & Technology of Food Emulsions" 2012-06-22

Processing of double emulsions

Axel Syrbe Food Science and Technology Department Nestlé Research Center Lausanne

« ... double emulsions are compartmentalised liquid dispersions, in which the droplets of the dispersed phase contain smaller droplets of similar (but not necessarily identical) composition as the continuous phase ... »

The beauty of multiple emulsions

Nested structures (drops in the drops)
 Two kinds of interfaces with opposite curvatures

 (different surfactants o/w and w/o)

Variable phase ratios and morphologies

• Shell – core template

MASS TRANSFER

Semi-permeable membrane functionality
(compositional differences between inner and outer phase,
thin films of dispersed phase, solvent partitioning)

Inner phase « payload »

Making double emulsions – the usual 2- step process

Making double emulsions – other variants

Zambrano et al., Ind. Chem. Eng. Res., 2003, 42, 50-56

Figure 1. Formulation-composition bidimensional map. Standard (dashed) and dynamic (solid) inversion frontiers.

• (Transient) structure occuring during phase inversion

Hanson et al., Nature, vol.455, 2008 (Letters, p.85 ff.)

Figure 2 | Cryogenic transmission electron microscopy of copolypeptidestabilized emulsions prepared using a microfluidic homogenizer. Vitrified

• Lucky case of 1-step formation with suitable diblock surfactant

Coalescence of dispersed phase

Viscosity loss, oil separation

•

- Membrane system in dynamic equilibrium (continuous diffusion)
- Inner droplets are intrinsically unstable (Laplace pressure)
- DE « lives » from an osmotic pressure gradient that outweighs the Laplace pressure difference

DE samples made with opposite salt concentration gradients, 1 week @4 $^\circ\,$ C

Double emulsions – our challenge

food legislation constraints on w/o emulsifier

« W/o/w emulsion technology offers a sensory perception closer to full fat than the classical thickener approach»

- Keep high (apparent) oil phase ratio and specific surface area
- Dispersed phase « stuffing » less readily perceived in the mouth than a continuous phase dilution
- Replacing oil by a liquid, not by a « viscoelastic microsponge » of much larger size
- Maintain oil droplet interaction forces

Less fat – one goal – two ways

space-filling oil phase

Classical low-fat mayo

- Dilute <u>continuous</u> phase with starch & thickener paste
- <u>Draw-back</u>: mouthfeel thickener-controlled, compromise on texture & taste

Double emulsion

- «Stuff» oil phase with water
- Benefit:

Space-filling oil phase is apparently maintained, close to full fat perception

2-step process realisation at bench-scale

Dosing

- volumetric pumps
- total flow 5 20 kg/h
- temperature 15 20° C

Mixing ratio wo/W

- 2 mass flow meters
- measures m*, $T_{\text{in}},\,\rho$
- (allows foam detection)

Packaging & storage

 single-use cups (serrated, PP, 125 ml)

"1-shot" emulsification

- IKA MagicLab MKU colloid mill
- rot. speed = 6.6 (3.5 -12) krpm
- gap = 0.16 mm, volume = 0.2 cm³
- backpressure = 0.5 bar (for stable dosing, pneumatic valve)

Sample variability due to line operation issues

Same final line settings, same recipe, two very different results depending on flow rate history, effect more pronounced for low w/o ratios Nestlé Research S 19 Nestlé Research 19.X3 X3 19 w/o 20/80 S DA 19.X3 B WO/W 75/25 X3 σ w/o 20/80 A. Syrbe Tel. 89. H WO / W 75/2 NOT FOR HUMA VERS-CHEZ-LES-B σ A. Syrbe Tel. S H 1 NOT FOR HL S Initial yield stress = 140 Pa Initial yield stress = 50 Pa 6 months storage 18°C, initially both homogeneous

- Emulsion premix must not exceed a critical mixing ratio at the volume scale of the dispersing zone
- Dosing fluctuations or coarse pre-emulsions can generate critical feed volume units
- Depending on the hysteresis characteristics, the system does recover or not
- "In-process leakage" of DE dilutes the continuous phase and allows higher mixing ratios than for o/w

... catch up to the o/w reference with appropriate premixing ...

p. 16 Nestle Research 👸

Double emulsions – some examples of experimentally obtained drop size distributions

Level 0 Basic sample assessment

Use standard methods for judging sample quality and its evolution over time

Level -1 Quantify water population of real samples

Develop suitable methods for following the water exchange process between inner and outer phase

Level -2 Study key processes (water exchange, coalescence, emulsifier behaviour) in laboratory experiments

Mimic water transport in multi-capillary tensiometric device, study coalescence in drop micromanipulator, classify interfacial properties of suitable wo emulsifiers,

« Pragmatic » analytics

- Sedimentation / serum separation (visual)
- Rheological behaviour (vane)
- Droplet sizing by light scattering / optical microscopy
- Confocal microscopy (fat staining)
- Conductivity

« Explorative » analytics

- Quantification of internal and external water populations NMR self-diffusion
- Combined electrochemical method (Na⁺-specific electrode & conductivity)

Visual appearance

Qualitative visual observation of :

- Serum formation (amount, time)
- Gel character of creamed fat phase
- Presence of free oil

Vane rheology

- Stress-controlled, serrated cups (avoid wall slip)
- Determination of «yield stress», power law coefficient and high shear rate viscosity (composite Ellis model)
- Advantage of single-use cups + vane = low mechanical disturbance of sample

Static light scattering

- Droplet sizing with Mastersizer (issues: destabilisation of primary emulsion, deflocculation, swelling of double emulsions)
- Qualitative cross-check with optical microscopy (issues: opacity, sample compression & capillary stresses, coalescence)

Confocal microscopy

- Diffusive Nile Red staining of fat phase
- Reduced compression and capillary stresses acting on sample
- No dilution = visualization of space filling
- Qualitative check of droplet sizes and filling with inner phase

Intrinsic problem of conductivity measurements for determination of DE water populations

Double emulsions - complications

• Water diffusion:

counteracting, partially outweighing effects on $\sigma(\text{ext})$ and $f(\Phi)$

- Inner phase leakage: σ(ext) and f(Φ) effects add up ⇒theoretically possible
- Combined diffusion and leakage: Variable mixing of inner and external phase, $\sigma(ext)$ can vary strongly for constant Φ_{ext}
- ⇒ Φ_{ext} determination is ambiguous , but noticeable conductivity increase indicates inner phase leakage

Combined electrochemical method for evaluation of water population

- conductivity of W_{ext} dominated by NaCl
- c[Na+] sufficiently well measured with Na-specific electrode
- clear relationship $\phi(Na^+) \sigma_0$ (from $\phi = \phi(c[Na^+])$ and $\sigma = \sigma(c[Na^+])$ curves)
- ⇒ measurement of water population and salt leakage seems feasible

NMR self diffusion experiments

NMR diffusion experiment of water in double emulsion

NMR self diffusion experiments

Gradient strength

NMR diffusion signal is a function of the unknown inner water droplet distribution and the unknown outer hindered diffusion distribution

Correlation of yield stress and water population evolution

Yield stress comparison of simple and double emulsions, according to NMR water population data

simple emulsion

Wo = $100 \times w_0 / (w_0 + oil)$

double emulsion

$$= 100 \times w_{o} / (w_{o} + w_{i} + oil)$$

Serum separation is diluted simple emulsions is similar to DE behaviour

"Jammed" droplet network is lost beyond a critical dilution ⇒ droplet compacting & drainage

 $\approx 50\% \text{ oil}: 60/40 \text{ emulsion diluted with 20\% } W_{\text{intern}} \\ (= 80/20 \text{ diluted with 30\% } W_{\text{extern}} \text{ and 20\% } W_{\text{intern}})$

 \approx 67% oil : diluted with 20% W_{intern}

 \approx 73% oil : diluted with 10% W_{intern}

 $\approx 76\%~oil$: diluted with 5% W_{intern}

80% oil : NRC full fat mayo, stirred

Inner water fully mobile ?

w/o inner emulsions with identical droplet size distribution (0.5 mm)

- apparent self diffusion coefficient of water = 8.3×10^{-12} m²/s
- still two orders of magnitude larger than droplet mobility

- W/o/w double emulsion approach is applicable to high fat emulsions like mayonnaises
- Sensorial benefits compared to classical low fat technology are real, but do not expect miracles for very low fat contents
- Traditional industrial shelf-life expectations cannot be met with currently available w/o emulsifer (dosing limits)
- Appropriate processing is a must, but it but cannot compensate for lacking emulsifier performance
- Key for improvement are more performant w/o emulsifier solutions

Nestle

Good Food, Good Life

Thank you for your interest.

