

'RESEARCH NEVER STOPS'

Building innovative drug discovery alliances

Mode of action analysis and biomarker discovery by phospho-proteomics

Evotec AG, May 15th 2013

Global reach for global projects – more than 600 employees

Evotec worldwide

Sales representation (Boston, Tokyo)
 Operations & sales representation

About Evotec Munich

A leader in chemical proteomics and phosphoproteomics

Evotec Munich

- Evotec's Center of Excellence for proteomics and oncology
- Emerged from Kinaxo Biotechnologies, a Max Planck spin-off founded by the renowned cancer researcher Prof. Axel Ullrich
- Combines highest service quality standards with powerful technological innovation developed by leading proteomics scientists such as Dr. Henrik Daub, Evotec Munich's SVP Technology & Science

• Collaborates with leading academic research laboratories including the Matthias Mann lab at the Max Planck Institute

• Has worked with numerous global pharma and biotechnology companies such as

Technology Overview

Cellular Target $\mbox{Profiling}^{\ensuremath{\mathbb{R}}}$ and Mode-of-Action Studies

Cellular Target Profiling®

 Peer-reviewed chemical proteomics technology to both identify and quantify interactions with cellular compound targets Cellular compound selectivity analysis in a native context

Target deconvolution of hit
 compounds from phenotypic screens

Mode-of-Action Studies

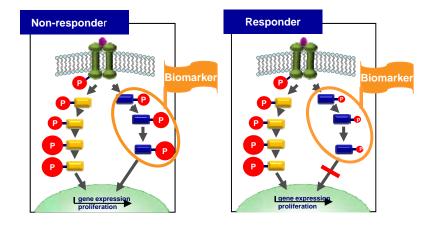
- Quantitative and unbiased analysis of protein modification and expression on a proteome-wide scale
- High-end quantitative mass spectrometry to monitor 10,000+ phosphorylation sites, 1,000+ acetylation sites or 6,000+ proteins, e. g. upon drug treatment

In vivo mode-of-action
 analysis in cells, tissues or patient samples

Discovery of biomarkers candidates

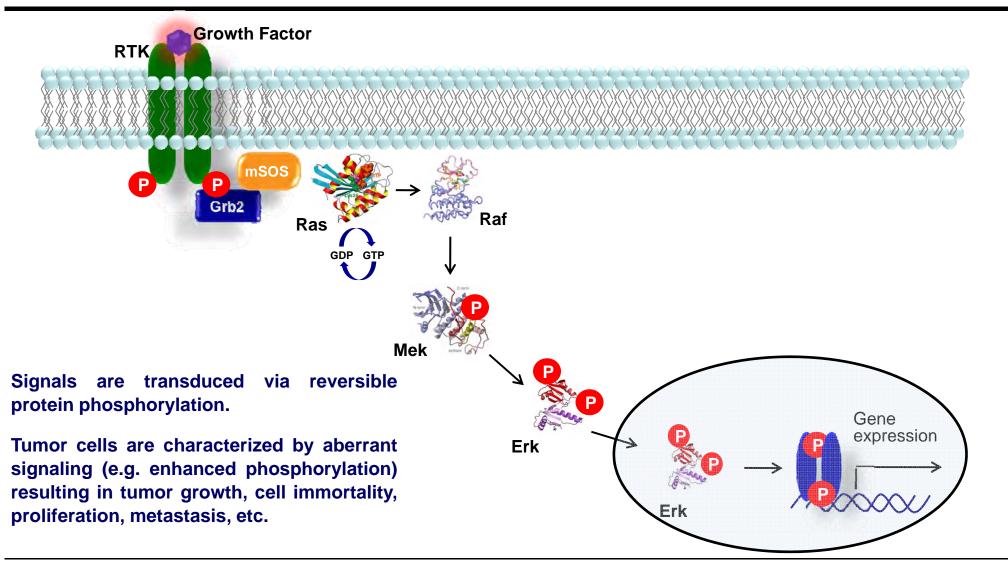
Evotec Munich infrastructure

High-end mass spectrometry equipment and proprietary software tools

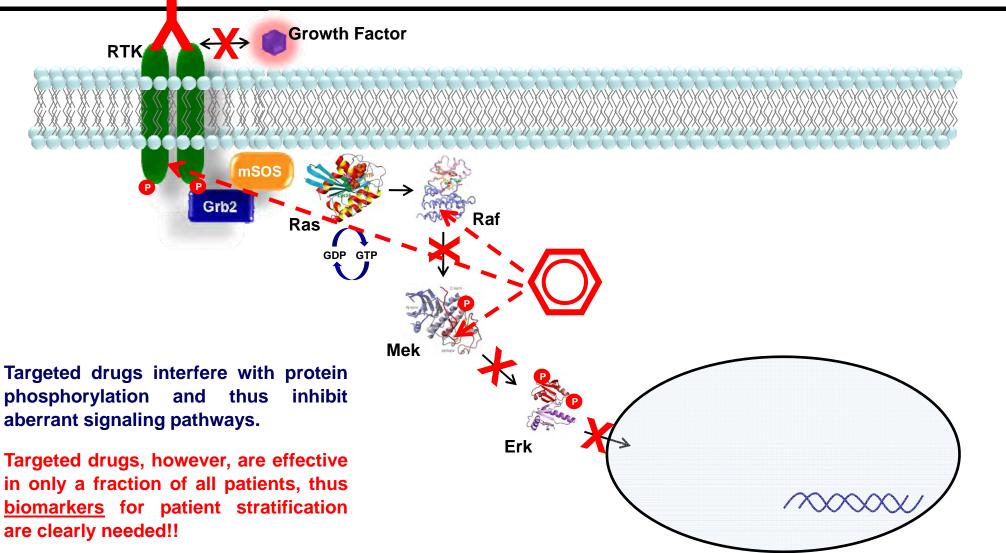


Quantitative proteomics and *in vivo* PTM analysis

Mode of Action analysis of targeted drugs & biomarker identification


- High-end mass spectrometry and software applications enable comprehensive quantitative analyses
 of the proteome or protein modifications such as phosphorylation or acetylation in living cells,
 tissues, or patient samples
- Monitoring of global protein expression changes and signaling pathway regulation to determine the influence of drug treatment, disease state or genetic interference on biological systems
- Applications include mode of action analysis of targeted drugs and discovery of biomarkers (protein expression, phosphorylation, acetylation) for patient stratification

Cellular Signal Transduction


Protein phosphorylation is the key event

Cellular Signal Transduction

Targeted drugs interfere with aberrant signaling

Biomarker Study for Dasatinib (Sprycel®)

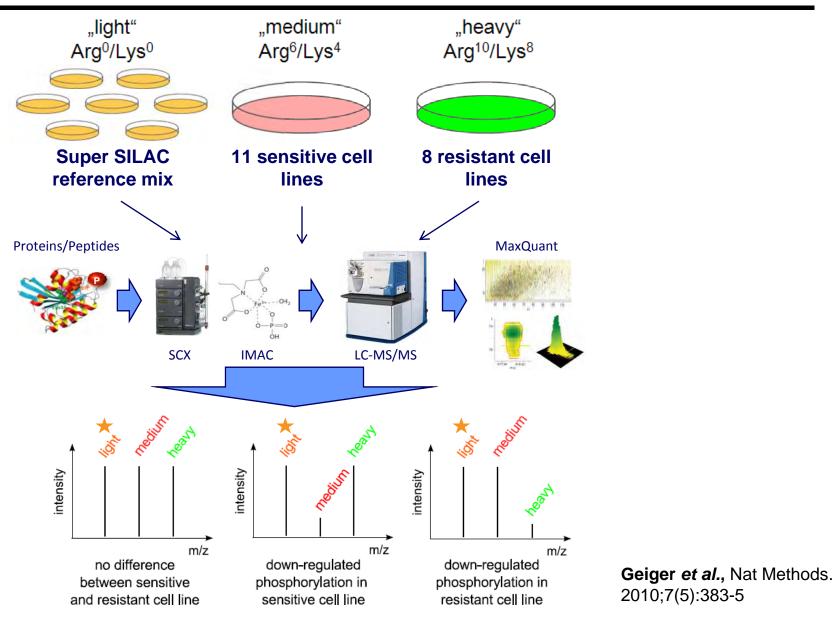
Identification of a response prediction marker in NSCLC cell lines

Rationale

- 342,000 deaths from lung cancer (20% of all cancer deaths) in Europe (2008), with 85% of all lung cancer incidences are non-small cell lung cancer (NSCLC).
- Recent clinical studies showed clinical activity of dasatinib (targeting BCR/ABL, Src kinases, ephrin receptors and PDGFRβ) in NSCLC patients.
- Neither Src activation nor EGFR or K-Ras mutation could predict response to dasatinib treatment.
- Can we identify a phosphorylation signature that predicts response to dasatinib treatment in NSCLC?

Quantitative & global unbiased analysis of basal cellular protein phosphorylation of a NSCLC cell line panel

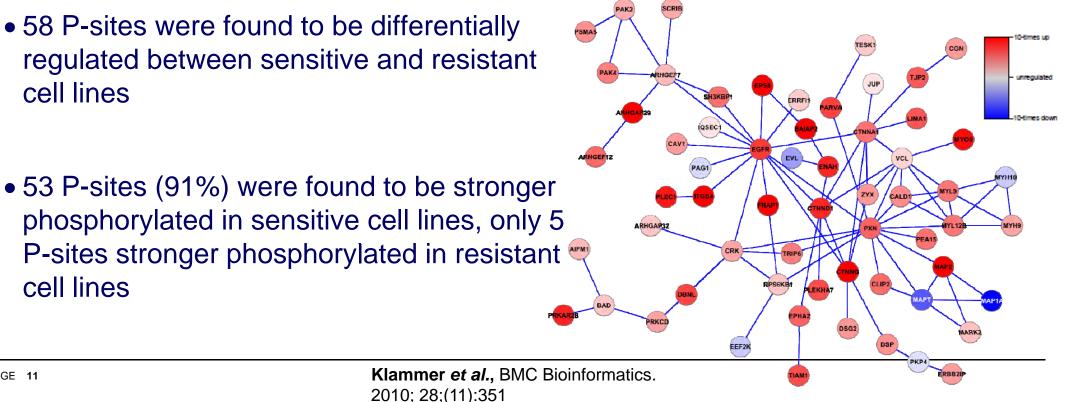
The Cell Line Panel


Response prediction in 19 NSCLC cell culture models

#	Cell Line	Indication	Origin	Supplier No	TP53 mutation description	IC50 (μM) Sos et al.	IC50 (µM) this study	Group	
1	HCC366	NSCLC	DSMZ	ACC 492	-	0.482	0.017	+]
2	PC9	NSCLC	MPI for Neurological Research		c.743G>A; Arg->Gln; p.R248Q	0.4603	0.02	+	
3	H2030	NSCLC	ATCC	CRL-5914	c.785G>T; Gly->Val; p.G262V	0.1183	0.022	+	
4	HCC827	NSCLC	ATCC	CRL-2868	-	0.1456	0.033	+	
5	HCC2279	NSCLC	MPI for Neurological Research		c.701A>G; Tyr->Cys; p.Y234C	0.139	0.045	+	
6	LouNH91	NSCLC	DSMZ	ACC 393	-	0.113	0.068	+	⊢ ğ
7	H1666	NSCLC	ATCC	CRL-5885	WT	0.175	0.076	+	
8	H1648	NSCLC	ATCC	CRL-5882	c.102_103ins1; Leu->?; p.?	0.0593	0.079	+	à
9	H2009	NSCLC	ATCC	CRL-5911	c.818G>T; Arg->Leu; p.R273L	0.7465	0.085	+	
10	H322M	NSCLC	MPI for Neurological Research		c.743G>T; Arg->Leu; p.R248L	0.0819	0.311	+	
11	HCC4006	NSCLC	ATCC	CRL-2871	-	0.8376	0.95	+]
12	H520	NSCLC	ATCC	HTB-182	c.438G>A; Trp->STOP; p.W146X	11.56	1.43	-] _
13	H157	NSCLC	MPI for Neurological Research		c.892G>T; Glu->STOP; p.E298X	10.54	2.63	-	
14	Calu6	NSCLC	ATCC	HTB-56	c.586C>T; Arg->STOP; p.R196X	22.54	2.8	-	1
15	H460	NSCLC	ATCC	HTB-177	WT	24.16	3.9	-	L C
16	H1395	NSCLC	ATCC	CRL-5868	WT	31.12	4.7	-	ponsive
17	H2077	NSCLC	MPI for Neurological Research		-	10.07	4.75	-	
18	H2172	NSCLC	ATCC	CRL-5930	-	16.71	5.85	-	
19	HCC78	NSCLC	DSMZ	ACC 563	-	13.9	17.05	-]

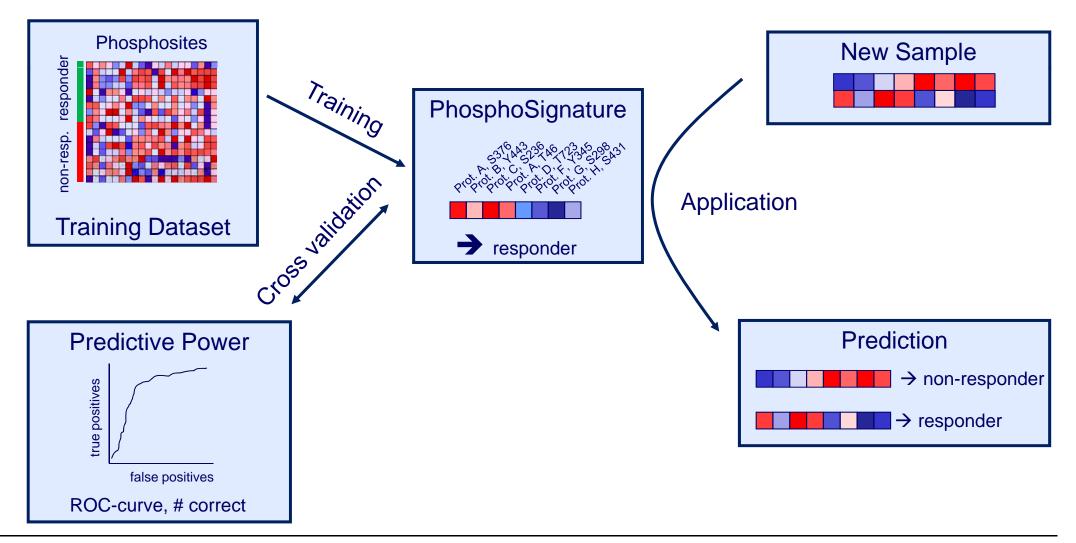
The General Workflow

... applying the Super-SILAC strategy

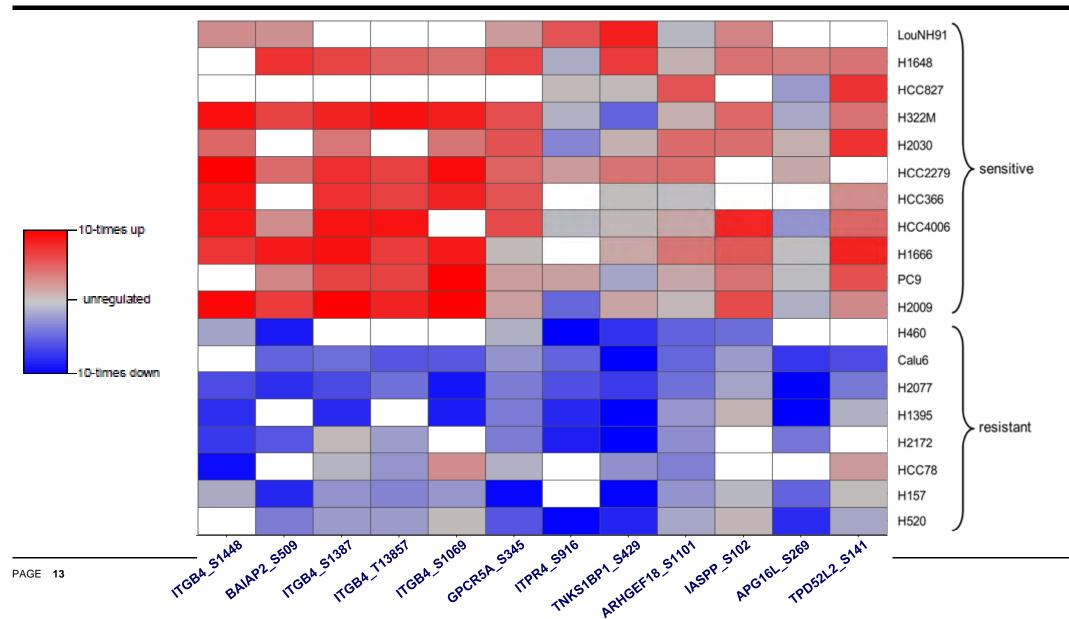

PAGE 10

General Proteomics Results

... identified phosphorylation sites

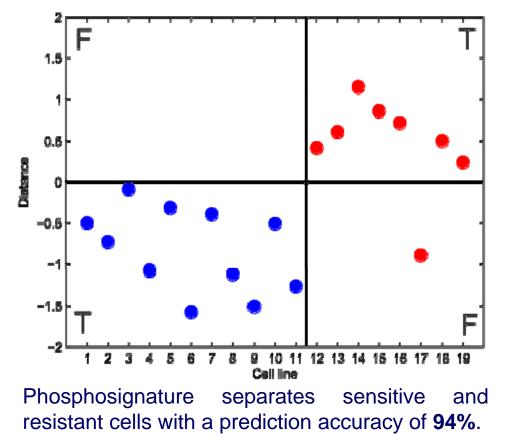

- 34,747 P-sites identified, 88% having a cell line to Super-SILAC ratio < 4
- 83.2% serine, 15.3% threonine and 1.5% tyrosine phosphorylations
- 25,020 P-sites were rated to be class-I (localization probability > 75%)

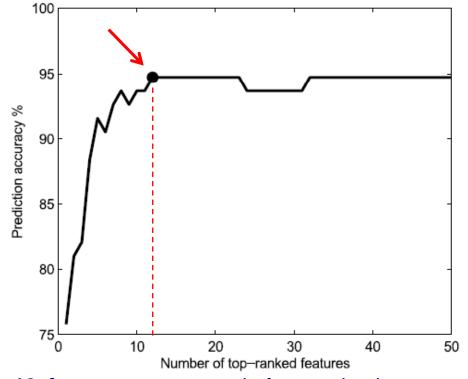
Phosphosignatures as Biomarkers


Statistical identification and validation of the phosphosignature

The Phosphosignature

Heat map of the 12 phosphosites across the cell line panel

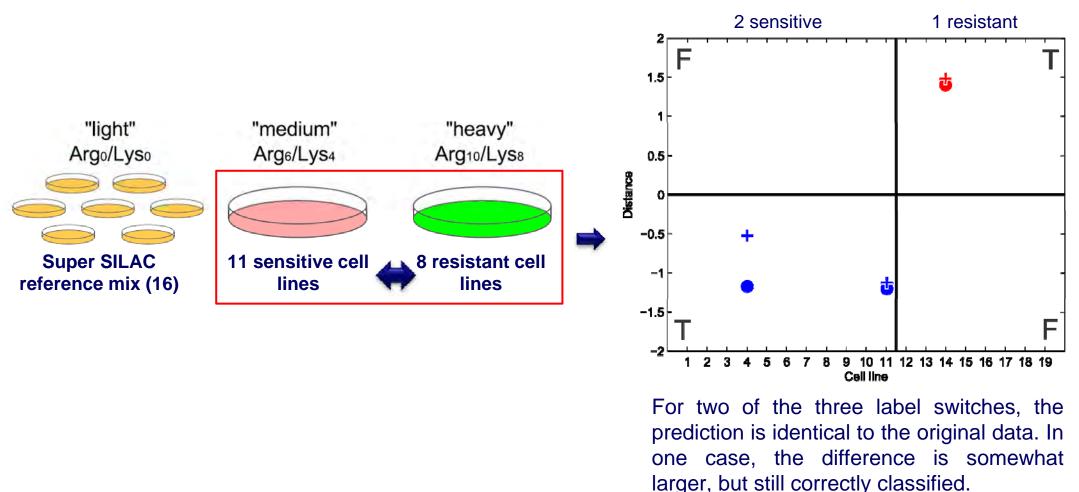



The Phosphosignature

Classification results

Classification results represented by distance to the respective SVM's separating hyperplane.

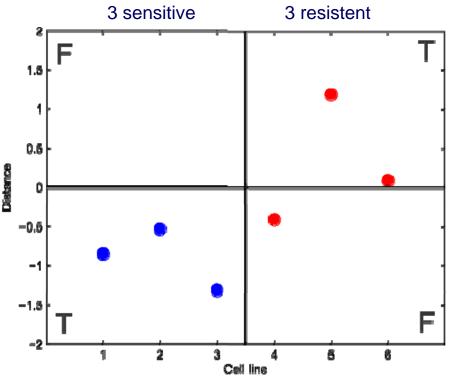
Prediction accuracy depending on the number of features in the phosphosignature.


12 features are enough for maximal response prediction.

Phosphosignature Validation

Is the identified signature robust?

Test for SILAC labeling Effects: Label Switch experiment



Phosphosignature Validation

Classification results for signature validation

Application of the phosphosignature to a panel of breast cancer cell lines

#	Cell Line	Indicatio
1	MDA-MB-231	Breast car
2	HCC1937	Breast car
3	BT-20	Breast car
4	BT-549	Breast car
5	MDA-MB-468	Breast car
6	MCF7	Breast car

5 of the 6 breast cancer cell lines were classified correctly (prediction accuracy of **83%** only one resistant sample was wrongly predicted, indicating the applicability of phosphosignature in other cancer types.

) (µM) ıg et al.	IC50 (µM) this paper	Group
0095	0.036	+
070	0.082	+
1652	0.497	+
057	1.71	-
125	2.8	-
.524	3.27	-

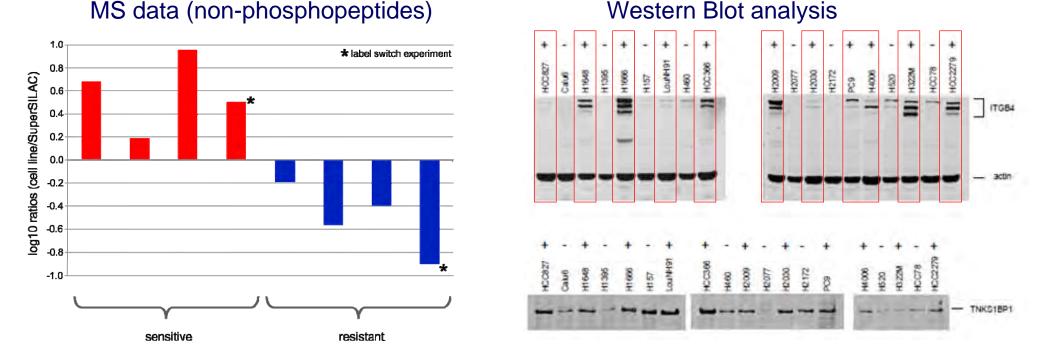
Proteins spanning the Phosphosignature

12 phosphorylation sites on 9 proteins

- Integrin beta-4 (ITGB4): cell-cell / cell matrix interaction
- Brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2): regulation of actin cytosceleton
- Rho guanine nucleotide exchange factor 18 (**ARHGEF18**): regulation of actin cytosceleton
- RelA-associated inhibitor (IASPP): functionally connected to p53
- Retinoic acid-induced protein 3 (GPRC5A): functionally connected to p53
- Inositol 1,4,5-trisphosphate receptor type 3 (ITPR3): receptor for inositol 1,4,5-trisphosphate, mediating release of intracellular calcium.
- 182 kDa tankyrase-1-binding protein (TNKS1BP1): binds to Tankyrase-1/2
- Autophagy-related protein 16-1 (APG16L): plays an essential role in autophagy
- Tumor protein D54 (TPD52L2): interacts with MAL2

Proteins spanning the Phosphosignature

12 phosphorylation sites on 9 proteins


0-times Integrin beta-4 (ITGB4): cell-cell / cell matrix interaction • Brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2): ASPP2 unregulated regulation of actin cytosceleton ASPP • Rho guanine nucleotide exchange factor 18 (ARHGEF18): regulation of actin cytosceleton ITGA6 RelA-associated inhibitor (IASPP): functionally connected to p53 Retinoic acid-induced protein 3 (GPRC5A): functionally connected to p53 ARHGDIA • Inositol 1,4,5-trisphosphate receptor type 3 (ITPR3): receptor for inositol 1,4,5-trisphosphate, mediating release of intracellular calcium. RHGAP • 182 kDa tankyrase-1-binding protein (TNKS1BP1): binds to Tankyrase-1/2 ARHGEF RHOA Autophagy-related protein 16-1 (APG16L): plays an essential role in autophagy WAVE: Tumor protein D54 (TPD52L2): interacts with MAL2 PAGE 18

Integrin β-4 (ITGB4)

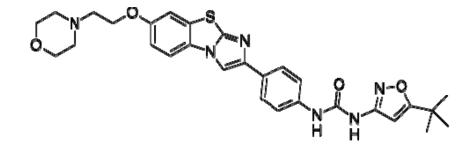
A protein surrogate marker for its phosphorylation

Difference in ITGB4 phosphorylation due to differential protein expression?

- ITGB4 is differentially expressed between responsive and resistant cell lines
- ITGB4 alone classifies 8 of 11 sensitive and all resistant models correctly (84%)

Summary

- We successfully identified a response prediction marker from global and unbiased quantitative phosphoproteomics experiments in a preclinical setting.
- The final signature consists of 12 phosphosites located on 9 different proteins.
- The phosphosignature was highly predictive for the sensitivity to treatment with dasatinib in NSCLC as well as breast cancer cell lines.
- These 12 phosphorylations are candidate biomarkers for predicting response in solid tumors to dasatinib.
- Analysis of non-phosphorylated peptides and western blot analysis showed that the protein expression of ITGB4 is likely to be predictive for sensitivity to dasatinib treatment as well.
- Validation of the phosphosignature in the clinic will prove general applicability

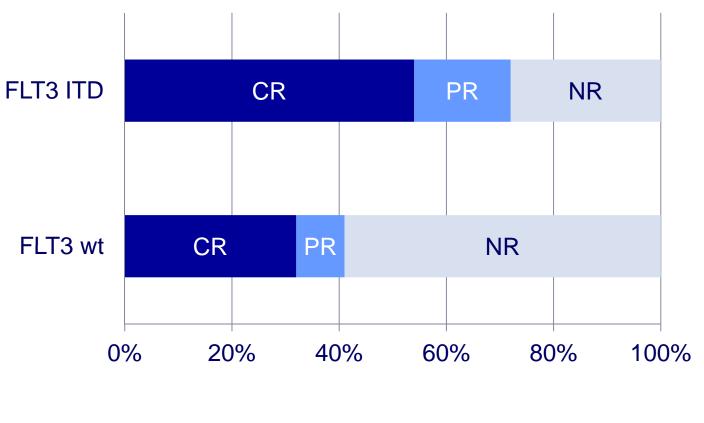


Biomarker discovery in Patient Samples

Predictive Phospho-Signatures

Global Analysis of the Phosphoproteome of Human Blasts Reveals Predictive Phosphorylation Markers for the Treatment of Acute Myeloid Leukemia with AC220

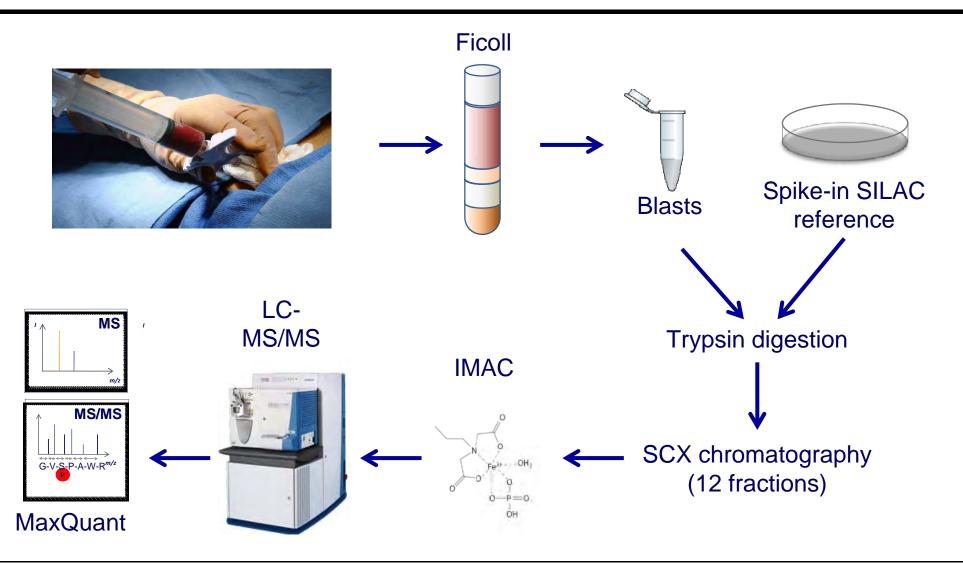
- Pathway activation as biomarker for kinase inhibitors
- Successful discovery of phospho-signature for dasatinib in NSCLC cell lines
- Here: application to discovery from clinical samples
- AC220 (Quizartinib): selective FLT3 inhibitor



Biomarker discovery in Patient Samples

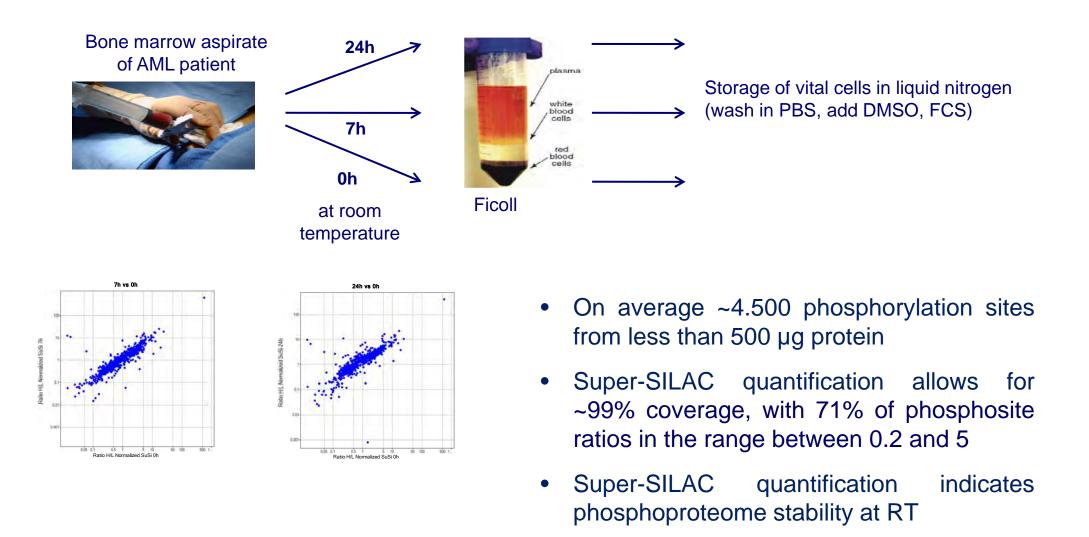
Predictive Phospho-Signatures

Phase II trial (ACE) for mono therapy in AML just completed:


- CR: complete responder PR: partial responder •
- NR: non responder

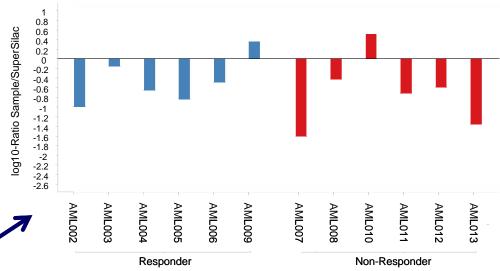
•

Phosphoproteomics Workflow


Preparation and MS-Analysis of AML Cells

AML patient sample phosphoproteomics

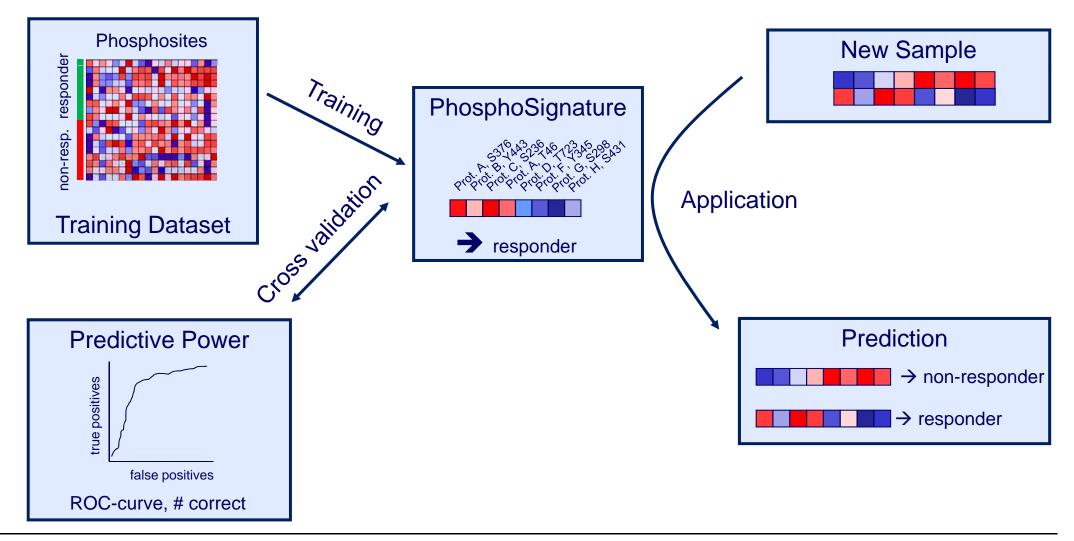
Phosphoproteome Stability



Sample Collections

Training and Validation Samples

Collection	Responder	Non-Responder
Training	6	6
Validation	6	3


- Pre-treatment samples
- FLT3-ITD positive
- Responder := CR + PR
- ~ 300 µg protein per sample extracted on average
- FLT3 phosphorylation of Y694/ Y699 on STAT5A/ STAT5B is <u>not predictive</u> for AC220 response

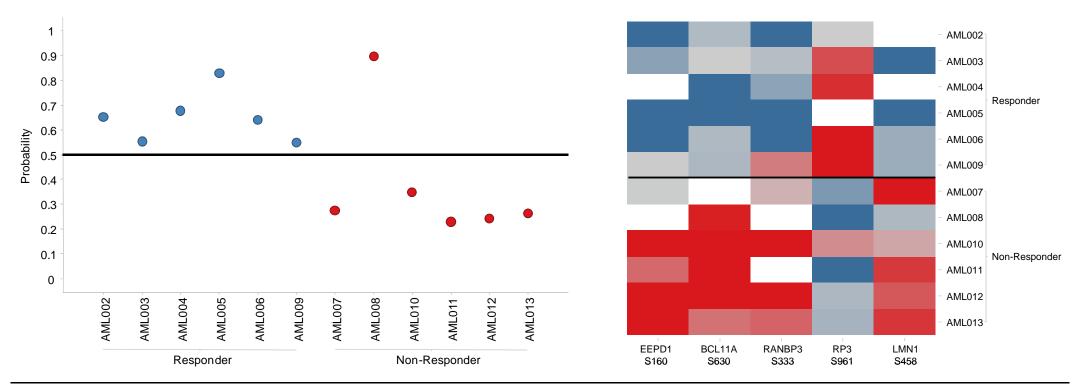
Biomarker Discovery Workflow

Training and Validation

Phospho-Signature

Identification in Training Data Set

- Detection of 13,236 phosphorylation sites; 7,831 class-I sites
- No predictive markers found on proteins involved in FLT3-pathway
- Selection of 5 features:


Uniprot id	Gene name	Site	Protein Name	Diff (Log10)	SV weight
Q7L9B9	EEPD1	S160	endonuclease/exonuclease/phosphatase family domain-containing protein 1	-1.05	-0.75
Q9H165	BCL11A	S630	B-cell lymphoma/leukemia 11A	-0.68	-0.54
Q9H6Z4	RANBP3	S333	Ran-binding protein 3	-0.94	-0.31
Q92834	RP3	S961	x-linked retinitis pigmentosa GTPase regulator	0.64	+0.88
P02545	LMN1	S458	Lamins A/C	-0.76	-0.75

Cross-Validation

High accuracy on training samples

- Leave-One-Out Cross-Validation (feature selection and SVM training)
 → Accuracy: 92%
- AML008: marked reduction of marrow blasts (from 95% to 5-10%), but 5-10% circulating blasts → stable disease

Validation

Independent Validation Collection

- Two misclassifications: AML031 and AML033
- AML033: FLT3-ITD positive cells were sensitive, patient progressed with FLT3-wt clone
- Accuracy 78% or 88% (without AML033)

Probe	Quelle	Ansprech- verhalten	Vorhersage
AML014	Baltimore	CRi	responder
AML020	Baltimore	CRi	responder
AML025	Baltimore	NR	non-responder
AML030	Philadelphia	CRp	responder
AML031	Philadelphia	CRi	non-responder
AML032	Philadelphia	CRi	responder
AML033	Philadelphia	SD	responder
AML034	Philadelphia	NR	non-responder
AML035	Philadelphia	CRi	responder

Conclusions

- A global and unbiased quantitative phosphoproteomics approach was successfully performed on human blasts
- ~4,600 phosphorylation sites can be identified from 2x10⁷ cells
- Translation to targeted platform (MRM, immuno-based assay)
- Signature of 5 phosphorylation markers predict response for AC220 (accuracy 80-90%)

Acknowledgment

evotec

Felix Oppermann Martin Klammer Andreas Tebbe Henrik Daub Klaus Godl and others

Hubert Serve Heike Pfeifer Thomas Oellerich Björn Steffen

Erich Enghofer Michael Gorray

Max Planck Institute of Biochemistry

Matthias Mann Jürgen Cox

Jesper Olsen

Medizinische Hochschule Hannover

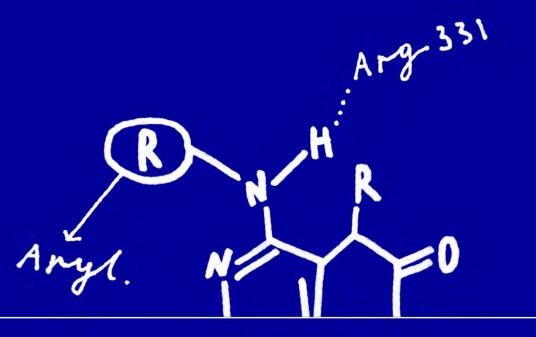
Jürgen Krauter

Mark Levis

Alexander Perl

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung


'RESEARCH NEVER STOPS'

Building innovative drug discovery alliances

Your contact: Dr. Christian Eckert

Project Leader Chemical Biology Am Klopferspitz 19a 82152 Martinsried Germany

Tel.: +49 (0)89.45 244 65-18 Fax: +49 (0)89.45 244 65-20

