Soft Furniture Flammability Regulations and Development of Test Methods

Shonali Nazaré, PhD. Guest Researcher: NIST Shonali.nazare@nist.gov Tele: 001 301 975 2499

Overview

- Residential fires: US scenario.
- Mattress flammability regulation: a success story.
- Current and proposed residential furniture regulations.
- Development of Test Methods.
- Standard Reference Materials.
- Final Remarks.

Residential Fires: US Scenario

Larger houses

- Open floor plans
- High ceilings
- Large void spaces

• Changing building materials

- Vinyl frames
- Composite doors
- PUF in rigid thermal insulatic > M
- Gypsum board

New technologies

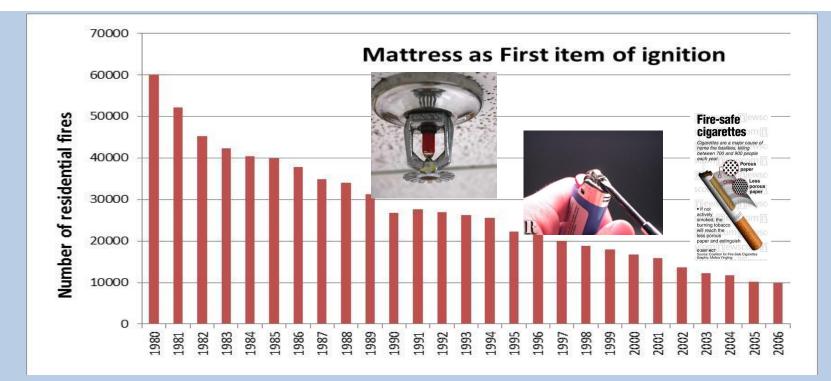
- Photovoltaic systems
- Battery storage systems etc.

- Faster fire propagation.
- Shorter time to flashover.

- Shorter time to collapse.
 - Shorter escape time.
- ic > Multiple fatalities.
 - Rapid changes in fire dynamics.
 - More fire fighter injuries.

The US Fire Problem (Residential) (2009-2011)

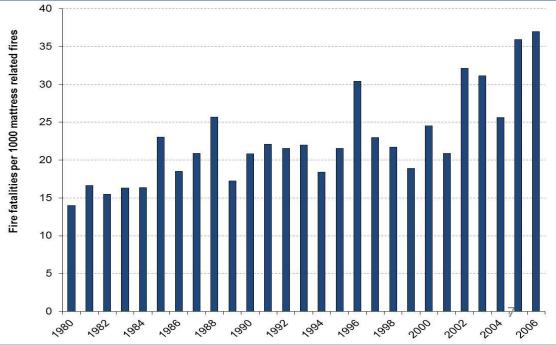
- 1,600 fatal fires in residential buildings.
- 2,495 deaths (ie each fire claiming more than 1.5 civilian).
- 79% of fatal fires extended beyond the room of fire origin. ...leading to multiple fire fatalities.
- Leading areas of fire origin in fatal fires: bedrooms (26 %) and living and family rooms (23 %). ...where you expect to find upholstered furniture items.
- Smoldering cigarette is common cause of fatal fires in residential buildings.


The Mattress Flammability Regulations

- Smoldering Ignition resistance
- Cal TB 106 (1970).
- 16 CFR 1632 The Standard for the Flammability of Mattress and Mattress Pads (1972).

- 18 cigarette test (9 on bare mattress and 9 with two-sheet test).
- Char length criterion of <u>2 inches</u> maximum from the cigarette.
- Provision for prototyping and pooling.
- Includes component test for ticking and tape edge.

The Mattress Flammability Regulations



- NFPA Fire Sprinkler Initiative.
 - Risk of dying decreases by 83%.
- 16 CFR 1210 Safety Standard for Cigarette Lighters (2000).
 - CPSC study showed reduction of 58% fires due to child safe lighters.
- Introduction of reduced ignition propensity (RIP) cigarettes (2004).
 - About 30% reduction due to RIP cigarettes.
- Decline in percentage of population who smoke.

The Mattress Flammability Regulations The need for open-flame standard

- Huge fuel load (mattress+ bed clothes).
- Smoldering fires transition into flaming fires.
- Thermoplastic fibers/battings/fillings burn vigorously when ignited.
- Potential for room flashover.
- Open-flame ignitions provide short time window for detection, escape and fire response.

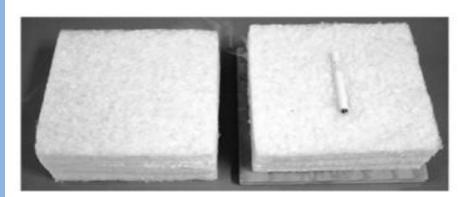
The Mattress Flammability Regulations

- 16 CFR 1633 The Standard for the Flammability (Open-flame) of Mattress Sets (2007).
- Performance based standard.
- Main objective was to reduce fuel load in mattresses and increase egress time.

The Mattress Flammability Regulations

- Heat release capped: Max PHRR at 200 kW (30 mins) and THR of 15 MJ at 10 min.
- The 16 CFR 1633 standard is similar to Cal TB 603.
- The ignition source simulates heat flux of burning bedclothes.
- Challenges due to variations in:
 - Size
 - Geometry
 - Construction
 - Materials
- Right solution that is :
 - Cost effective
 - Does not impact comfort/durability
 - Passes the open-flame test.

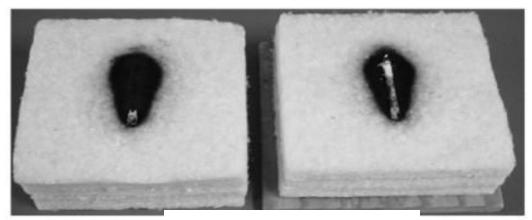
The Mattress Flammability Regulations: A Success Story


Role of fire blocking barrier fabric is to prevent or minimize contribution of foam to fire.

BF should

- be instrumental in extinguishing flames from burning cover fabric/ticking.
- provide adequate insulation to reduce heat transfer.
- not get involved in burning.
- have low permeability to limit pyrolysis underneath the barrier.
- have good structural integrity when exposed to heat and/or flames.

Evaluation of Protective Performance of Fire Barriers


Smoldering Ignition Test for Highloft Barriers

Start of 'Sandwich' test

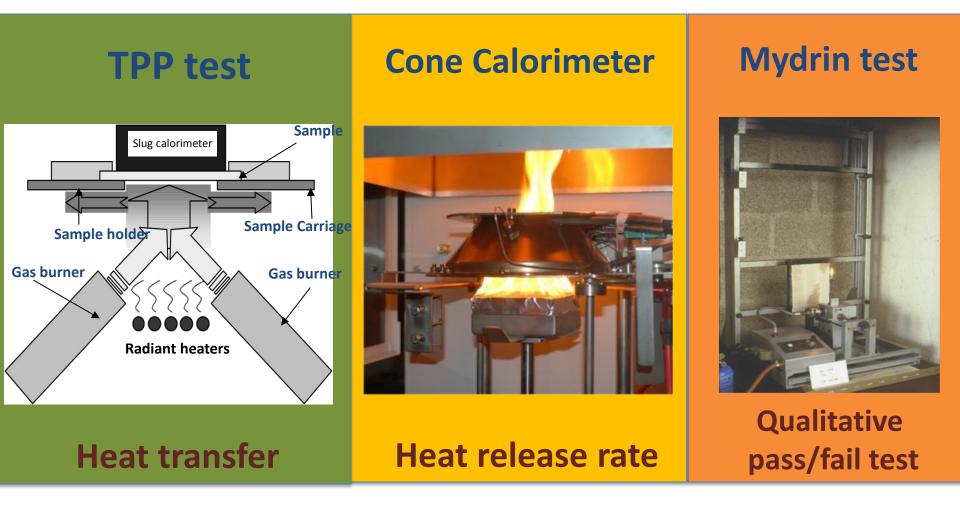
Test in progress

End of test

Evaluation of Protective Performance of Fire Barriers

Open Flame Ignition Test for Highloft barriers

4" flame


BS Source 3 (350 ml/min)

Specimen : 12" x12" Flame application time: 10 mins Fails if weight loss < 4%

Experimental Barrier Fabrics

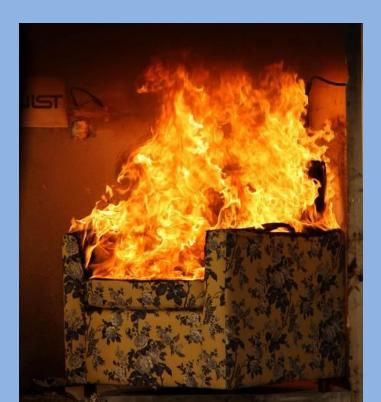
Sample	Fiber blend	Structure	Area density, g/m ²	Avg.thickness, mm	Application
BF-1	FR rayon/polyester	Highloft	155	4.	Residential Mattress
BF-2	FR rayon/polyester	Highloft	230	7	Residential Mattress
BF-3	FR rayon/polyester	Needle punched	240	8	Residential Mattress
BF-4	Boric acid treated cotton/ FR rayon/polyester	Needle punched /Stratified	230	6	Residential Mattress
BF-5	Boric acid treated cotton	Needle punched	230	7	Residential Mattress
BF-6	Carbon fiber	Nonwoven felt	500	4	Aircraft seating
BF-7	Carbon fiber	Nonwoven felt	576	7	Aircraft seating
BF-8	FR rayon/polyester	Needlepunched	237	4	Institutional Mattress
BF-10	FR polyester /FR rayon	Stitchbond	165	0.7	Institutional Mattress
BF-11	Glass fiber core/ FR acrylic fiber	Knit Barrier using core yarn technology	186	0.9	Upholstered Seating
BF-13	FR rayon/glass fiber/ poly lactic acid (PLA) fiber	Knit Barrier	165	1.4	Upholstered Seating
BF-15	Glass fiber core/ FR acrylic fiber	Woven Barrier	170	0.5	Upholstered Seatings
BF-16	FR rayon/crystalline silica fiber/poly lactic acid	Nonwoven	290	2.9	Upholstered Seating

Performance Evaluation of Barrier Fabrics

Performance Evaluation of Barrier Fabrics

Parameters	Performance Attributes		
Heat transfer (J/m ²)	Thermal protection of cushioning components		
TTI (s)	Ignitability of BF under burning cover fabric/ticking		
PHRR (kW/m ²)	Maximum heat release to maintain positive feedback mechanism		
THR (MJ/m ²)	Flammable content of BF		
Char	Protective property of BF after been consumed in fire		
FIGRA (kW/s)	Fire spread rate		
Visible damage	Qualitative fire performance under end-use conditions		

Summary of Results


Sample	Area density, (g/m²)	Thickness (mm)	Cone Calorimetry pHRR (KW/m ²) / FIGRA kW/s)	TPP test HTF (J/g)/TPI	MYDRIN test Ticking/BF/PUF BF/PUF PUF
Stichbond FR polyester /	165	1	102± 8 / (9)	430/2	
FR rayon		Self-ex	tinguishir		
Highloft FR Rayon/ Polyester	230	7	138 ± 3 / (13)	130/8	
roryester		Thern	nally thick	USB Zos	
Woven Glass fiber	150	0.2	6± 0.5 / (1)	287/4	
	Lo	ow gas-	permeab	asa Ros	

The Residential Upholstered Furniture

- Why is the upholstered furniture flammability problem so complex ?
 - Current attempts towards regulating furniture are directed towards components as opposed to full-scale products.
- Why can we not use the same approach to the one used in residential mattresses?
 - Furniture industry is more rigid.
 - Fire barriers have to be resistant to both, smoldering and open-flame ignitions.

The Residential Upholstered Furniture A Complex Problem

- First item ignited.
- Primary item contributing fire spread.
- 3D geometry
- Comfort/Aesthetics
- Cost
- Durability

Residential Furniture Flammability Timeline of Requirements

- 1975: Cal TB 117 (National de fecto standard) Component tests, includes smoldering ignition and open-flame ignition tests.
- 1979: UFAC voluntary standard (Cigarette ignition) Component tests.
- 1980: Cal TB 116(Cigarette ignition) Full-scale tests.
- 1991: Cal TB 133 (large open flame ignition) Full-scale test for UF in public occupancies.
- 2005: 16 CFR 1634 CPSC's Proposed rule for residential furniture.
- 2013: Cal TB 117 Component tests, includes smoldering ignition and open-flame ignition tests.

Impact of Revised Cal TB 177 (2013)

- More thermoplastic cover fabrics,
- Eliminate FR in foams,
- Increased use of thermoplastic fiber battings,
- Increase fuel loads,
- Increase severity of fires,
- Increased smoke and toxic gases,
- Faster fire spread due to melt dripping,
- Reduce egress times.

Cal TB 117-2000 Component Test (Small open-flame)

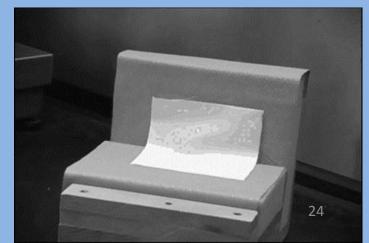
- Cover Fabric:
 - 45° burn test.
 - Small flame.

- Almost all furnishing fabrics pass this test.
- Not predictive of full scale performance.
- Foam:
 - Vertical test.
 - Small flame (12 s).
 - No Afterflame and minimum char length requirement.
 - FR additives required to pass the test.
 - Not predictive of full-scale performance.

Cal TB 117 Component Test (Smoldering ignition)

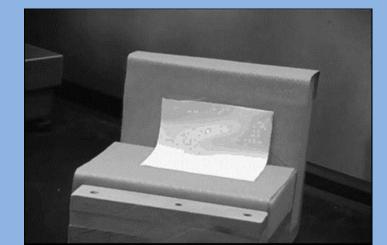
- Cover Fabric:
 - 45 min test
 - Pass/fail criteria(char length < 45 mm)</p>

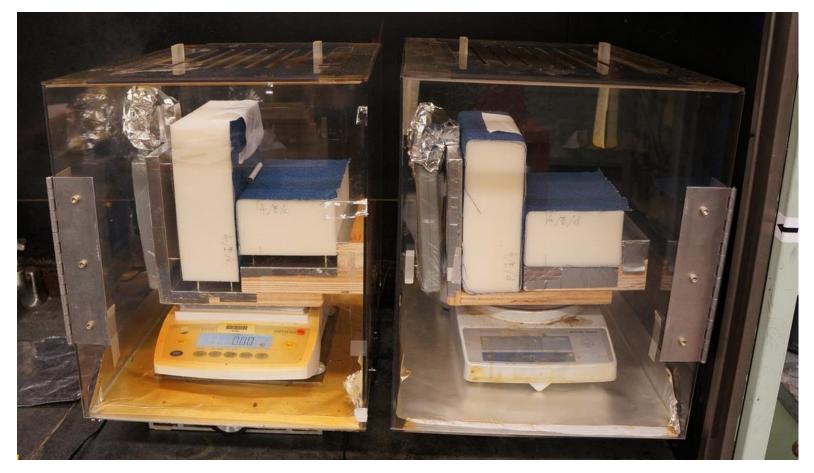
- Test result influenced by components of mock-up assembly.
- Not predictive of full scale performance
- Foam:
 - 45 min test
 - Pass/fail criteria (mass loss <20%)
 - Prescribed cover fabric.
 - Not predictive of full-scale performance.


Cal TB 117 Component Test (Smoldering ignition)

- Resilient filling other than Foam
 - 45 min test
 - Pass/fail criteria (mass loss <20%)
 - Prescribed cover fabric.
 - Not predictive of full-scale performance.

Cal TB 117-2013 Component Test (Smoldering ignition)


- Barrier Fabric with Class II Cover fabric:
- 45 min test.
- Pass/fail criteria(char length < 50 mm).
- Test result influenced by components of mock-up assembly.
- Not predictive of full scale performance.


The UFAC Requirements

- Smoldering Ignition Test,
- Mock-up test,
- @ 25 mins test duration,
- Pass-fail criteria (Char length).
- Basis for several standard test:
 - ASTM E 1353
 - NFPA 261
 - CPSC's 16 CFR 1634 (Proposed).

Mock-up Configuration to Simulate Real-life Scenario

Effect of Component Configuration on Smoldering Performance

Cover Fabric/BF/Polyester batting/Foam

Cover Fabric/Polyester Batting/BF/Foan

Duration of Smoldering Ignition Test

		ASTM 1353	Cal TB 117	CPSC
Test duration	@ 25mins	45 mins	45 mins	45 min

Remains of mock-up after 1 h

Vertical Char Length Criterion

CPSC's Proposed (2008) 16 CFR 1634 Residential Upholstered Furniture Flammability Standard

- Smoldering Ignition test for Cover Fabrics.
- Use of Barrier Fabrics for Class II cover fabrics.
- Smoldering and small open-flame ignition tests for barrier fabrics.

Residential Upholstered Furnishings What needs to be done ?

- Establish regulatory framework based on performance requirements.
- Develop repeatable test methods that accurately predicts fire performance in the real world.
- Develop standard reference materials (SRM) for use in testing.
- Develop better fire barrier materials that will meet the fire safety requirements as well as requirements associated with comfort, durability and cost.
- Develop or implement other solutions such as other types of foam (U.K. model), LbL coated foams etc.

Engineered Efforts for Reducing Furniture Flammability

- Research in developing Standard Reference Materials
 - SRM Cigarette.
 - Other Surrogate Ignition Sources
 - Ember and Ash
 - Arcing or heat from operating equipment.
 - SRM Foam (density, cell size, and air permeability).
- Improving ignition resistance through selection and design of cover fabrics.
- Development of ignition resistant barrier fabrics.
- Development of new generation flame retardants,

Furniture Flammability- 4 decades of Unsolved Problem !

