

Johnson Matthey Catalysis and Chiral Technologies

Small-Scale Optimization Studies of Homogeneous Hydrogenation

Antonio Zanotti-Gerosa

JMX Johnson Matthey

1817

Percival Norton Johnson establishes business as gold assayer in London

1964

Commercializes catalysts for fine chemical applications

1974

World's first catalysts to control vehicle pollution are produced at Royston, UK

1983

Pharmaceutical portfolio initiated with platinum based anticancer therapies

Johnson Matthey Catalysis and Chiral Technologies

PHARMACEUTICAL . FINE CHEMICAL . AGROCHEMICAL

STATE OF THE ARTS FACILITIES THAT MAINTAIN EXACTING STANDARDS

H E T E R O G E N E O U S C A T A L Y S T S

CHIRAL CATALYSTS

H O M O G E N E O U S C A T A L Y S T S

BIOCATALYSTS

LIGANDS

CHIRAL ALCOHOLS

S C A V E N G I N G T E C H N O L O G I E S

REFINING

CATALYTIC SERVICES

Core Ligand Classes of Chiral Technologies

Scope of Asymmetric Hydrogenation

Feasibility well-established

R₁

Scope of Asymmetric Hydrogenation

Scope of Asymmetric Hydrogenation

Asymmetric Route to JNJ-26076713

MedChem route required chromatographic separations of four diastereoisomers

Two parallel routes from the acid and the ester were evaluated at JM CCT

Ester Hydrogenation Route

A broad screen indentified a novel catalyst

Addition of lodine can modify the iridium catalyst to reduce the quinoline ring

Kinney, Telhea, Zanotti-Gerosa, Grasa et al. Tetr. Asymmetry 2008, 19, 938

Acid Hydrogenation Route

Acid was more reactive with lower ee, which was upgraded to 99% on work-up

Kinney, Telhea, Zanotti-Gerosa, Grasa et al. J. Org. Chem. 2008, 73, 2302; Tetr. Lett. 2008, 49, 5328.

Diastereoselective Ester Hydrogenation

Starting material for natural product synthesis in S.V. Ley's group

Newton, Ley, Grainger, Casas-Arcé et al. Adv. Synth.Catal. 2012, 1805

Unconventional Alkene Hydrogenation

The ee increased from 12% (Me-BoPhoz) to 90% (PhEt-BoPhoz) by modification of N-substituent

Gross, Zook, Reddy *et al.* OPRD **2008**, *12*, 929 Gross, Zook, Zanotti-Gerosa *et al. Tetr. Lett.* **2012**, *53*, 1025

Binap Asymmetric Hydrogenation Catalysts

[(R)-Binap Ru (benzene)Cl] Cl R = H: Binap R = CH₃ Tol-Binap Binap, Tol-Binap and Xyl-Binap ligands are off-patent

Binap-Ruthenium catalysts: C=O, C=N hydrogenation (ketoesters, reductive amination, JST technology)

Binap-Iridium catalysts: C=N hydrogenation

Binap-Rhodium catalysts: hydrogenation, allylic isomerisation, 1,4-additions, hydroacylation.....

New Route to Solifenacin

In 2008, literature precedents suggested two main areas:

Transfer hydrogenation

Iridium-catalysed hydrogenation

Not yet published in 2008: Angew.Chem.Int.Ed. 2011, 50, 10679

 $[{Ir(H)-[(S,S)-(f)-Binaphane]}_{2}(\mu-I)_{3}]^{+}I^{-}, S/C 2,000/1, DCM, I_{2}, HI, RT, 24 h, 95\% ee$

Ružič, Pečavar, Prudič, Kralj, Scriban, Zanotti-Gerosa, *OPRD* **2012**, *16*, 1293

Iridium Catalysts, Additives, Solvents Screen

25 ligands tested in situ with [Ir COD CI]₂ in MeOH and DCE:

Best results in DCE: P-Phos (84% ee), Tol-P-Phos (78% ee),

Binap (60% ee), Binaphane (95% ee but only 24% conv)

Binap + [Ir COD CI]₂ tested in 9 solvents and two additives (I₂ and iodide) Binap + [Ir COD CI]₂ tested in THF solvent with 25 additives:

ee increased to 78% ee with AcOH

ee increased to 87% ee with H_3PO_4

Ružič, Pečavar, Prudič, Kralj, Scriban, Zanotti-Gerosa, *OPRD* **2012**, *16*, 1293

Solvent and Acid Optimisation

DCM AcOH in DCM:	81% ee Binap, 81% ee Binap,	85% ee P-Phos 87% ee P-Phos
toluene: AcOH in toluene:	60% ee Binap, 82% ee Binap,	88% ee P-Phos
IPA: AcOH in IPA: H ₃ PO ₄ in IPA:	72% ee Binap, 70% ee Binap, 90% ee Binap,	91% ee P-Phos
THF H ₃ PO ₄ in THF H ₃ PO ₄ in THF + KI	66% ee Binap, 87% ee Binap, 82% ee Binap,	95% ee P-Phos 92% ee P-Phos

30 bar H₂, 50°C, 16 h, S/C 43/1 to 425/1

Final Reaction Conditions

- Catalyst: (S)-P-Phos + [Ir COD Cl]₂ (*in situ*, >95% ee); Binap viable alternative (87% ee)
- Solvent: THF / H₃PO₄ or IPA/ H₃PO₄

Loading: 2500/1 (1.5 g), S/C 1500/1 (15 g), 1000/1 (200 g)

Ružič, Pečavar, Prudič, Kralj, Scriban, Zanotti-Gerosa, *OPRD* **2012**, *16*, 1293

New Synthesis of Aliskiren

Aliskiren is a direct renin inhibitor, marketed by Novartis for the treatment of hypertension Chemessentia aimed at original and cost-effective synthesis of this API Chemessentia devised route in collaboration with University of Siena (Italy) Catalytic expertise was brought by Johnson Matthey, Catalysis and Chiral Technologies

Arena, Barreca, Carcone, Cini, Marras, Nedden, Rasparini, Roseblade, Russo, Taddei, Zanotti-Gerosa *Adv. Synth. Catal.* **2013**, *in press*, DOI: 10.1002/adsc.201200934

Barreca, Carcone, Cini, Marras, Rasparini, Russo, Taddei *La Chimica e l'Industria,* March **2013**, 129

Aliskiren: Retrosynthesis

Enol Ester Asymmetric Hydrogenation

Heterogeneous and homogeneous, chiral and achiral catalysts was tested Choice of protective group was key to success (acid preferable to ester) Enol-acetate hydrogenation preferred to ketoester hydrogenation with Ru-Binap [(S)-Phanephos Rh COD]BF₄ provided high enantio- and diastereoselectivity

> JM Son Matthey Catalysis and Chiral Technologies

Noyori Ketone Reduction

Licensed to JM CCT from the Japanese Science and Technology Corp. (JST) in 2003

Hydrogenation vs Transfer Hydrogenation

Hydrogenation

Transfer Hydrogenation

C=O reduction Basic conditions (alcohol + t-BuOK) Pressure equipment (1 to 100 bar) TON 1,000 - > 10,000/1 upon optimisation Catalyst BisphosphineRuCl₂Diamine

C=O and C=N reduction Acidic to basic conditions (HCOOH/Et₃N or Na-formate) Larger variety of conditions can be tested TON 100 - > 3,000/1 upon optimisation Catalyst RuCl Arene Sulfonated-Diamine

Hydrogenation of Heterocyclic Ketones

Imidazo-pyridine-ketone: [XyI-P-Phos RuCl₂ DAIPEN] superior to the Binap analogue: TON up to 3,000, >95% ee Benzoimidazole-ketone: [XyI-P-Phos RuCl₂ DAIPEN] applied on Kg scale on the O-Bn substrate:

TON 2,500, >90% ee

Palmer, Zanotti *et al. Tetr.: Asymm.* **2008**, *19*, 1310; *Tetr. Asymm.* **2008**, *19*, 2102 Palmer *et al. OPRD* **2008**, *12*, 1170

New Route to (S)-Phenylephrine

Requirements: high enantioselectivity and productivity, avoiding protection/deprotection. Competing catalytic processes: biocatalysis and rhodium-catalysed asymmetric hydrogenation

HCl salt of the unprotected substrate was successfully reduced using an excess base: fast reaction to minimize side-products

Wills Tethered Catalyst

2006: mg sample sent by Prof Wills tested in customer project 2010-11: commercial production on Kg scale

Tethered catalyst increases activity and robustness against polyfunctionalised substrates

It can be used in both transfer hydrogenation and hydrogenation

Phosphine-Free Asymmetric Hydrogenation

S/C 500/1, MeOH or MeH/H₂O, 0.5 M, 30 bar H₂, 60°C

Wills, Jolley, Zanotti-Gerosa, Nedden, Seger et al. Adv. Synth. Catal. 2012, 354, 2545

Baratta's Catalysts

[(P^P) Ru Cl₂ Ampy] and [(P^P) RuCl (AMBQ)] catalyse both transfer hydrogenation (Baratta) and hydrogenation (Noyori, alkyl ketones) with very high activity (TON > 10,000)

Under licence from the University of Udine (Italy)

Baratta et al. Chem. Eur. J. 2008, 14, 9148

Baratta et al. Angew. Chem. Int. Ed. 2007, 46, 7651

'Multitasking' Catalysts

[Dppf RuCl₂ Ampy]: multitasking catalyst for carbonyl / alcohol interconversion reactions

Baratta et al. Organometallics 2012, 31, 1133

Heterogeneous Catalysts

metal dispersion metal location particle size

Schematic reportentation of the manuperous and more or loss molecular serving assure of carbon: /A) pero seriace as alable to large adjorbanes invaciants). depicted or hatchest "innicculas" and in folloests: (B) pere surface available m senal adaptivity (stating) and in solvents; (C) pore surface available only to solvent molecules.

Catalyst Support

a = wood **b** = peat **c** = coconut $\mathbf{d} = \operatorname{coal}$

egg shell / uniform

JM-Lilly Research Collaboration

The aryl(imidazo[1,2-b]pyridazinyl)methane intermediate to LY2784544, a JAK2 inhibitor, is obtained in a single step by treatment of ketone with 6 eq. of Et_3Si and 12 eq. of CF_3COOH . Alternative processes have drawbacks (e.g. Cl_3SiH / Et_3N , H_3PO_2) or did not work (e.g. Wolff-Kishner).

Mitchell, Cole, Pollock, Coppert, Burkholder, Clayton *Org. Process. Res. Dev.* **2012**, *16*, 70; Campbell, Cole, Martinelli, May, Mitchell, Pollok, Sullivan *Org. Process. Res. Dev.* **2013**, *17*, 273

A Challenging Hydrogenation

One-pot ketone hydrogenation and alcohol hydrogenolysis would provide the most straightforward approach

but

several side-reactions are possible due to the complexity of the molecule

Grainger, Zanotti-Gerosa, Cole, Mitchell, May, Pollock, Calvin *ChemCatChem* **2013**, *in press* DOI: 10.1002/cctc.201200526

One-Step Hydrogenolysis

Pd/C and other heterogeneous catalysts were tested:

Solvents (THF, toluene, AcOH, water);Temperatures (30 to 70° C);Pressure (6 to 30 bar H2);Additives (HCI, NaCI, ZnCI2, CuCI2, CuSO4).

Only side-products were formed, mainly from morpholine cleavage and dechlorination Tentative structural assignement based on LC/MS analysis

Ketone Reduction to Alcohol Intermediate

Heterogeneous catalysts: $Ir/CaCO_3$ (JM type30) gave clean alcohol in MeOH but only with incomplete conversion

Homogeneous catalysts for hydrogenation and transfer hydrogenation were tested in search for improved chemoselectivity:

Noyori-type hydrogenation and transfer hydrogenation (first-generation); Baratta and Wills catalysts (second-generation)

Baratta Hydrogenation Catalysts

Reaction conditions:

Baratta's AMPY and AMBQ catalysts: MeOH, 5% t-BuOK, 50-60°C, 27 bar H_2 first-generation Noyori catalysts: i-PrOH, 5% t-BuOK, 50°C, 27 bar H_2

Wills Transfer Hydrogenation Catalysts

Catalyst	S/C	Formate	Conv.
[Ts-EN RuCl (p-cym)]	1,000/1	NH₄OOCH	60%
[Ts-EN-teth RuCl]	5,000/1	NH₄OOCH	100%
[Ts-EN-teth RuCl]	10,000/1	NH₄OOCH	99.5%
[Ts-EN-teth RuCl]	5,000/1	NaOOCH	41%

Reaction conditons : AcOEt/water 4/1, 80°C, 16 h

N Ru N Cl H₂

[Ts-EN RuCl (p-cym)]

[Ts-EN-teth RuCl]

Achiral Wills catalyst provided much higher activity than first generation achiral Noyori catalyst

Alcohol Hydrogenolysis with Copper Salts

Solvent (4/1)	Additive	Conv.	Product
THF/ HCl aq.	-	96%	-
THF/HCl aq.	10% CuSO ₄	43%	41%
AcOH/HCI aq.	10% CuSO ₄	>99%	75%
AcOH/HCI aq.	1% CuSO ₄	>99%	95%

Catalyst: 5% Pd/C 5R39

Other salts (FeCl₂, NiCl₂, CeCl₃, Zn(OAc)₂, MgBr₂) only gave side-products

Replacement of AcOH with of H_3PO_4 and use of Hastelloy autoclaves provided higher reproducibility

Why Copper ?

Hydrogenation with Cu modifiers with Pd supported catalysts or preformed bimetallic Pd-Cu catalysts has some precedents:

selective dechlorination in the presence of C=C bonds, denitration of water diastereoselective imine reductionbut not for alcohol hydrogenolysis....

Depending on the different applications different mechanistic suggestions have been proposed

Under the reaction conditions copper precipitation may occur to form a metal layer and act as modifier of the palladium catalyst

JM-Lilly Collaboration: Conclusions

Stepwise approach using *both* heterogeneous and homogeneous catalysts

Homogeneous catalysts have provided high activity and perfect chemoselectivity

A combination of Pd/C and Cu salts has provided high chemoselectivity

Aknowledgements (among others...)

Lilly Kevin. P. Cole David Mitchell Scott A. May Patrick M. Pollock Joel R. Calvin

Krka Milos Ružič

Lek Pharma

Ivana Gazić Smilović Zdenko Časar

Chemessentia

Marcello Rasparini

Lonza

John McGarrity

Prof. Martin Wills Prof. Walter Baratta Prof. Maurizio Taddei

JM CCT

Fred Hancock **Damian Grainger** Corina Scriban Hans Nedden Stephen Roseblade Vaclay Jurcik **Jacques LePaih** Beatriz Dominguez Andreas Seger Eva Casas-Arcé Sarah Facchetti Robert McNair Steve Hawker

Ξ

Thank you

Johnson Matthey Catalysis and Chiral Technologies

Johnson Matthey
