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Hepatitis C Virus is a chronic viral infection that can 
cause liver diseasecause liver disease

• RNA virus
• Primarily infects liver cells

M lti l t• Multiple genotypes
• Primarily blood borne transmission
• RNA-dependent RNA polymeraseRNA dependent RNA polymerase

• Frequent mutation and no “proofreading”
• Selection of HCV variants
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Hepatitis C: A global health problem
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170 million people are chronically infected with HCV



Current HCV Treatment

• Pegylated interferon alpha (PEG-IFN) plus ribavirin (RBV) for 24-48 
weeks

• Weekly subcutaneous injections of PEG-IFNy j
• Twice daily oral ribavirin

• Goal is eradication of virusGoal is eradication of virus
• Sustained Viral Response (SVR):  undetectable HCV RNA in plasma 

6 months after completion of therapy

• Significant adverse experiences associated with both ribaviran and 
PEG-IFN
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2011: A new dawn rises for HCV patientsp

• Victrelis™ (Merck) and Incivek™ (Vertex) received FDA approvals in ( ) ( ) pp
2011.

• 1st generation NS3/4A inhibitors used with existing standard of care to 
substantially improve treatment rates for hepatitis C.

• The frequent mutation and genetic heterogeneity of HCV requires that 
new therapies continue to be developed.

• Long term goal is shift to all oral direct acting antiviral therapy.
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HCV NS5B polymerase candidate

2 • Single enantiomer

2
• Unusual 8-membered dihydroindolo-
benzoxazocine ring

• 2,3-Disubstituted pyrrole

• Zwitterionic

• Narjes, F. and co-workers J. Med. Chem. 2011, 54, 289

6



Medicinal chemistry approaches
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• 1,3-Dielectrophile construction of 8-membered ring.
NMeO2C
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• Thermal instability of aziridine route via 5 unworkable and 
multiple steps with no crystalline intermediates to prepare.
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• Epoxide route via 6 attractive for further exploration.



Racemic synthesis of desired target

• Used to access multi-gram amounts.

• Preparative separation not viable for further kilogram scale-up.
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Strategy for first kilogram scale delivery
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• Employ commercially available chiral pool starting material (S)-6.Employ commercially available chiral pool starting material (S) 6.

• Replace high temperature azide displacement with alternative protocol.

D l di d l b i f i h l h l di i id h i f i i 2
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• Develop expedited elaboration of triethylethylenediamine sidechain from primary amine 2.



Substituted indole core synthesis

• Readily scaled and straightforward chemistry• Readily scaled and straightforward chemistry. 

• 2-Hydroxyphenylboronic acid expensive and not widely available.
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8-Membered benzoxazocine ring construction

• Heavily optimised to minimise dimeric and dialkylated impurities.
• First step: 

Sl dditi f f d h id i t id t 65 ºC• Slow, reverse addition of preformed phenoxide into epoxide at 65 ºC.
• Addition of EtOAc prior to water addition gave smooth direct crystallisation of 10.
• MTBE swish of product to remove unreacted glycidol tosylate. Typical 10A% of 3
formed under reaction conditions.

• Second step:
• Slow reverse addition of 10 into cesium carbonate at 65 ºC to promote intra-
vs intermolecular cyclisation.
• Direct crystallisation by water addition following addition of IPAc as co-solvent. 

• One pot 2 step telescoped through process suffered from low yields
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• One-pot 2-step telescoped through process suffered from low yields.
• (S)-Epichlorohydrin cheaper but led to racemic 3.



Transformation of alcohol to primary amine : medchem

• High temperature displacement : safety concerns.

• -elimination also a competitive side reaction. p

• What about Mitsunobu based protocol using diphenylphosphoryl azide?
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Mitsunobu inversion with diphenylphosphoryl azide (DPPA)

DIAD : Diisopropylazodicarboxylate

• Dramatic reactivity enhancement : inversion takes place at 15 ºC vs 110 ºC!
• Telescoped Staudinger azide reduction through addition of further Ph3P then water 
to avoid any handling of intermediate azide.y g
• Simple direct crystallisation of HCl salt from IPA/MeOH sheds all of the 2 mol Ph3PO 
byproduct. No distillation required at any point.
• Other N-nucleophiles evaluated did not afford desired inversion products.p p
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Hydrazoic acid headspace measurements 
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Hydrazoic acid headspace measurements

• Process run in the presence of 1.2 equiv. of i-Pr2NEt to avoid HN3 in the 
h d ll ith it
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headspace as well as with nitrogen sweep.



RC-1 Calorimetry measurements 

BATCH OPERATION HEAT OF REACTION (kJ 
mol-1 of alcohol 3)

ADIABATIC 
T (ºC)

COMMENTS

Addition of DIAD -173.1 23.3 Addition rate controlled. 
Accumulation <5% (addition over 
20 minutes at 10 °C) 

Addition of DPPA -149 3 18 5 70% accumulation (addition over 6Addition of DPPA -149.3 18.5 70% accumulation (addition over 6 
minutes at 15 °C)

Additi f THF 277 7 30 5 50% l ti ( dditiAddition of THF 
solution of Ph3P

-277.7 30.5 ~50% accumulation (addition over 
12 minutes at 25 °C) 

Addition of water -11.8 1.3 -
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Trimethylethylene diamine sidechain installation: medchem
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• 6 steps, linear with Boc glycine aldehyde not readily available



Trimethylethylene diamine sidechain installation

• Crystallisation of 18 from acetonitrile leads to ee upgrade to 98% 
through rejection of racemic mother liquors.

• Hydrazinolysis developed to address issues of genotoxicity and 
headspace liberation during batch concentration.
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One-pot Mitsunobu/Staudinger/Aza-Wittig
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• One-pot telescoped through process demonstrated to be viable but notOne pot telescoped through process demonstrated to be viable but not
developed due to time constraints.
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Reductive trimethylation and final isolation

• High pressure required for triple methylation (90 psi H2). Direct isolation
by pH adjustment to crystallise 20.by pH adjustment to crystallise 20.

• >5 kg drug substance prepared at >99 A%, >99% ee as tosylate salt.

Jeremy P. Scott* and co-workers Org. Process Res. Dev. 2011, 15, 1116
(Special Issue: Asymmetric Synthesis on Large Scale 2011)
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Long term route development : indole core
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• Cost basis too high to support long term manufactureCost basis too high to support long term manufacture.

• Supply chain for phenylhydroxyboronic acid unreliable and slow.
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Smiles rearrangement to prepare indole core
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G i d d i l t l M• Grignard prepared using elemental Mg.

• Ketone formation and demethylation high yielding allowing for 4-step telescoped through 
process to the desired indole product.p p

• Raw material cost basis significantly lower vs previous route.
• > 50 kg of indole, 59% overall from cyclohexylacetic acid.
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A Gibb* and co-workers, Org. Process Res. Dev. 2012, 16, 1947-1952



Asymmetric approaches based on enamide reduction

• Ketone 1 fully converted to imine in the presence of TiCl4 (0.5 equiv.) and N,N-dimethyl 
ethylenediamineethylenediamine.

• Acylation gave the phenyl, methyl and trimethylacyl enamides.

• Enamine and enamide regiochemistry confirmed by NMR.
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Proof of concept for enamide reduction
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Summary

Efficient construction of the 8 membered dihydroindolobenzoxazocine ring• Efficient construction of the 8-membered dihydroindolobenzoxazocine ring.

• Practical room temperature azidation under Mitsunobu conditions.

• Expedited construction of the trimethylethylenediamine sidechain.

• Multikilogram demonstration to prepare >5 kg of drug substanceMultikilogram demonstration to prepare >5 kg of drug substance.

• Alternative indole core synthesis via Smiles rearrangement demonstrated.

• Alternative enantioselective route evaluted by asymmetric enamide hydrogenation.
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