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Historical Perspective 
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• Early use dominated by steroids & anesthetics 

• 80’s surge following development of DAST in 1970 
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~15% of marketed drugs contain at least one fluorine 



Diversity of Fluorine Containing Pharmaceuticals 
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The use of fluorine is still dominated by a few chemotypes 

See also J. Chem. 

Ed.  

2013, 90, 1403 



Fluorinated AstraZeneca Pharmaceuticals 
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The Special Nature of Fluorine 
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H C N O F Cl Br 

Van de Waals radius 1.2 1.7 1.55 1.52 1.47 1.75 1.85 

Electronegativity 2.1 2.5 3 3.5 4 3.2 2.8 

Bond strength to C 98 83 70 84 105 77 66 

Uniquely, incorporation of fluorine introduces polar hydrophobicity 

F as a substituent is: 

 

• Small 

• Low MW = 19 

• Highly electronegative 

 

• Very strong 

• Highly polarised 

• Has low energy s*  

The C-F bond is : 

FC 
d+ d- 



Influences of Fluorine in Medicinal Chemistry 
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• Powerful inductive electronic effects  

• Electrostatic molecular interactions 

F pKa 

Metabolic 

oxidation 

potential 

Conformational 

effects 

Molecular 

recognition 

Lipophilicity 

F can influence potency, selectivity, absorption & metabolism  



Impact of Fluorination on Lipophilicity 
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H X

X   sI 

H 0.00 0.00 

F 0.14 0.52 

Cl 0.71 0.47 

CH3 0.56 0.04 

CF3 0.88 0.42 

OCH3 -0.02 0.29 

OCF3 1.04 0.39 

SO2CH3 -1.63 0.48 

SO2CF3 0.55 0.73 

• Strong EWG & modest increase in logP 

• Low risk, potentially high impact modification 
o metabolic stability 

o potency  

• Strong EWG & significant increase in logP 

Ar-F 

Ar-CF3 

Ar-SO2CF3 

• Powerful EWG & large increase in logP 

• 150x more lipophilic than SO2Me! 
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permeability 

Impact of Fluorination on logD & Permeability 

DPPIV inhibitors – Sitagliptin (JANUVIA™) 

• Triazoles are excellent H-bond 

acceptors, strong dipole across 

heterocycle 

J. Med. Chem. 2005, 48, 141 

Bioorg. Med. Chem. Lett. 2007,  17, 3373 

  

 

• Improved absorption and 

bioavailability 

X   

CH2CH3 1.02 

CF3 0.88 
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permeability 

Impact of Fluorination on LogD & Permeability 

CCR5 antagonists - AstraZeneca 
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Impact of Fluorination on Permeability 

DPPIV inhibitors – Sitagliptin (JANUVIA™) 

CV safety 

• Triazoles are excellent H-bond 

acceptors, strong dipole across 

heterocycle 

J. Med. Chem. 2005, 48, 141 

Bioorg. Med. Chem. Lett. 2007,  17, 3373 

  

 

• Improved absorption and 

bioavailability 
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Impact of Fluorination on Lipophilicity 
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ChemBioChem 2004, 5, 637 

Impacts on pKa 

Additional effects 

on partitionining 

at pH 7.4 
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Increase in LogD not always true for F addition 

DlogD for 

exchange of 

H to F 

http://onlinelibrary.wiley.com/doi/10.1002/cbic.200301023/full
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Impact of Fluorination on Lipophilicity 

Increase in LogD not always true for F addition 
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Impact of Fluorination on Lipophilicity 
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Bioorg. Med. Chem. Lett. 2010, 20, 6231 
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Bioorg. Med. Chem. Lett. 2011, 21, 4550 

Aliphatic F addition can lead to reduced logD 



Acids - Carbonic anhydrase II inhibitors 
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Impact of Fluorination on pKa 
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J. Biol. Chem. 1993, 15, 26233 

pKa 10.5 pKa 5.8 

Ki = 320mM Ki = 2nM 
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Linear Relation between Ki & pKa 

F substitution is a powerful tool for pKa modulation 



Impact of Fluorination on pKa 

Bases 
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ChemMedChem. 2007, 2, 1100 

CHxFyN

n DpKa 

1 -1.7 / b-F 

2 -0.7 / g-F 
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Generally predictable impact of F on basic pKa’s 



Impact of Fluorination on pKa 

Bases 
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ChemMedChem. 2007, 2, 1100 
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More complicated in ring systems – conformational effects 
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Fluorine substitution can give rise to conformational effects too... 



Impact of Fluorine on Conformation 
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Chem. Soc. Rev. 2008, 37, 308 
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Example Cathepsin K inhibitors - Odanacatib 
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Chem. Eur. J., 2003, 9, 4510 Zanda 
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• Peptidic nature 
• Improved metabolism 

• Good selectivity 

Odanacatib 

Bioorg. Med. Chem. Lett., 2008, 18, 923 

Impact of Fluorination on pKa 

Amine can be rendered non-basic by Fluorine substitution 



Impact of Fluorination on pKa 

Example – 5HT2A antagonists 
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J Med Chem. 2001, 44,1603 

NH

N
H

• Poor F% 
• Ki = 0.99nM 

pKa 10.4 

hydroxylation 

NH

N
H

F

pKa 8.5 

• F = 18% 
• Ki = 0.43nM 

 

NH

N
H

F

F

• F = 80% 
• Ki = 0.06nM ~10x 

 (Note Cl = 2.3nM) 

Metabolism 

blocked 

Absorption improved by pKa modulation with fluorine 



Intermolecular Interactions in Proteins 

20 

Science, 2007, 317, 1881 

• Observed interactions reflect that F not a good H-bond acceptor 

- But: C-F dipole undergoes ‘multipolar interactions’ – to amide N-H, 

backbone C=O, C-H and guainidinium groups 

- Can provide some potency benefit beyond lipophilicity 

Dipole (δ+/δ-)...Dipole (δ+/ δ-)  

 J. Med. Chem. 2011, 54, 2255 

Specific interactions dominated by dipole-dipole interactions 

3FLN 



Impact of Fluorination on pKa 

Example -  KSP inhibitors  
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Bioorg. Med. Chem. Lett. 2007, 17, 2697 

N

N O

FF

NH
2

• MDR efflux ratio = 1000 • MDR efflux ratio = 3 

pKa 10.3 
pKa 7.0 
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Cellular 
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Cellular efflux improved by pKa modulation with fluorine 



Caution in use of Fluoroethyl Amines & Ethers 

 

 
J. Med. Chem. 2008, 51, 4239 

Metabolism to toxic metabolites 
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“we were surprised to 

find mortality within 12 h 

postdose in 2 of 3 rats in 

the 12 mg/kg group.” 
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Caution in use of Fluoroethyl Amines & Ethers  

 

• Fluoroacetic acid is a known potent rodenticide and human toxin 

- Lethal in man in 2-10mg/kg doses 

- Dogs also particularly sensitive:  LD50 0.05-1mg kg 

- Mechanism well understood – inhibitor of tricarboxylic acid cycle 

 
 
 
 
 
 
 
 

• Described in Stryer in 1980’s 
 

Metabolism to toxic metabolites 
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Caution in use of Fluoroethyl Amines & Ethers  

 

• Fluoroacetic acid is a known potent rodenticide and human toxin 

- Lethal in man in 2-10mg/kg doses 

- Dogs also particularly sensitive:  LD50 0.05-1mg kg 

- Mechanism well understood – inhibitor of tricarboxylic acid cycle 

 
 
 
 
 
 
 
 

• Described in Stryer in 1980’s 
 

Metabolism to toxic metabolites 
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Caution in use of Fluoroethyl Amines & Ethers 

 

• Beware related compounds 

1,3-difluoroacetone 

25 Steve Swallow| 7th December 2011 R&D| Innovative Medicines| Global Safety Assessment 

Metabolite has predictable dose dependent toxicity – extent of 

metabolism unpredictable 
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J. Biochem. Mol. Tox. 2001, 15, 47 
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Fluorination to Reduce Metabolic Oxidation 

Metabolic oxidation – a complex multistep process 

• Appropriate F substitution can reduce intermediate carbocation stability via 

o Induction 

o Lack of resonance stabilisation. 

 

• May see oxidation switch to other positions & sites 
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Aromatic ring oxidation 
 

Aromatic F to reduce metabolism or prevent bioactivation 



Fluorination to Reduce Metabolic Oxidation 

Example- Ezetimibe (ZETIA™) 
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• Clinical proof of concept - modest effect 

• Complex metabolite profile 
o Retain positive metabolite features 

o Blocked undesirable oxidations 

N
O

OH

F

F

OH

Metabolism blocked 

Ezetimibe (ZETIA™) SCH 48461  

• 50x potency increase in in-vivo 

efficacy model 

Targeted use of Aromatic F to reduce metabolism 
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• Short half-life lead < 1hr 
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Metabolism 

blocked Solubilizing  

group 

• High blood levels for 24h (po) 

Fluorination to Reduce Metabolic Oxidation 

Example - Gefitinib (IRESSA™) 
 

Bioorg. Med. Chem. Lett. 2001, 11, 1911 

Targeted use of Aromatic F to reduce metabolism 



Fluorination to Reduce Metabolic Oxidation 

Molecular Matched Pairs – HLM Clint 
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X n 
DLogClint 

(mean) 
F(0.5) DLogDa 

4-F 497 0.06 0.086 0.18 

4-CF3 109 0.04 0.176 0.79 

4-OCF3 40 0.16 0.244 0.76 

4-Me 181 -0.24 0.029 0.41 

4-OCH3 299 -0.10 0.073 0.03 

4-Cl 337 0.01 0.079 0.57 

4-CN 168 0.25 0.193 -0.28 

4-SO2Me 77 0.30 0.329 -1.12 

Bioorg. Med. Chem. 2010, 4405 

H X

Ar Ar

DLogClint = Log10Clint(Ar-H) – Log10Clint(Ar-X) 

F(0.5) 

?? 

Untargeted use of aromatic F mostly low impact on metabolism 



Fluorination to Reduce Metabolic Oxidation 

Molecular Matched Pairs – HLM Clint 
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Bioorg. Med. Chem. 2010, 4405 
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R = F Clint = 5 

 
DLogClint >1.4 

AZ CCR5 antagonist project 

Targeted use of Aromatic F to reduce metabolism 
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• Mechanism based 

Cyp3A4 inhibitor 

Fluorination to Prevent Metabolic Activation 

Example - KCNQ2 potassium channel opener 
 

 J. Med. Chem. 2003, 46, 3778 

hydroxylation 

• No Mechanism based 

Cyp3A4 inhibition 

Metabolism blocked 
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OH

rationale rationale 

or 

Targeted use of aromatic F to prevent bioactivation 



Fluorination to Reduce Metabolic Oxidation 

• HLM Clint (ml/min/kg) = 202 

• CCL3 binding IC50 28nM 

Aliphatic Oxidation - CCR1 antagonists 
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Bioorg. Med. Chem. Lett. 2004, 14, 2175 
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• HLM Clint (ml/min/kg) = 8 

• CCL3 binding IC50 9nM  

hydroxylation Metabolism 

blocked 

Targeted use of aliphatic F to reduce metabolism 



Fluorination to Reduce Metabolic Oxidation 

• HLM Clint (ml/min/kg) = 242 

• CCL3 binding IC50 8nM 

Aliphatic Oxidation - CCR1 antagonists 
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Bioorg. Med. Chem. Lett. 2004, 14, 2175 
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• HLM Clint (ml/min/kg) = 35 

• CCL3 binding IC50 20nM 

Metabolism 

blocked 

Targeted use of aliphatic F to reduce metabolism 
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• Covalent binding 

Fluorination to Prevent Metabolic Activation 

Example – PDEIV inhibitors 
 

Bioorg. Med. Chem. Lett. 2002, 12, 2149 

• No covalent binding 

dealkylation 

oxidation 
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Targeted use of aliphatic F to prevent bioactivation 
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F pKa 

Metabolic 

oxidation 

potential 

Conformational 

effects 

Molecular 

recognition 

Lipophilicity 

• Predictabl(ish) 

• Can increase Clearance 

• Beware cheap tricks 

• Awareness 

• Targeted use 

to reduce Cl & 

metabolic 

activation  

• Multipolar 

interactions 

dominate 

Summary 

• Pharmaceuticals 

dominated by small 

number of chemotypes 

Easy access to fluorinated molecules & building blocks key to 

exploit unique properties 


