Techno-economic analysis of low-carbon hydrogen production through sorption enhanced steam methane reforming (SE-SMR) processes

Yongliang (Harry) Yan*, Peter Clough, Vasilije Manovic

Energy and Power Theme, School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK.

Introduction

Cranfield

University

- * Yongliang (Harry) Yan Email: yongliang.yan@cranfield.ac.uk
- Hydrogen, as a versatile energy source, is widely applied in oil refining, chemical production, and iron and steel production, and has also drawn significant attention to tackle various critical energy challenges
- □Steam Methane Reforming (SMR) is the dominant and commercial technology used for decades for hydrogen production, which is also a large emitter of CO_2 - around 2.6% of the global CO_2 emissions in 2019.
- □Sorption Enhanced Steam Reforming (SE-SMR) is an innovative technology to use the pre-combustion CO₂ capture to produce the decarbonised, high purity H_2 .
- □Techno-economic analysis of six different SE-SMR configurations has been conducted to evaluate their potential in low-carbon and carbon-negative hydrogen production.

Methodology

Proposed SE-SMR configurations

- Case 1A: SE-SMR with indirect air-natural gas combustion calciner
- Case 1B: SE-SMR with indirect air-biomass combustion calciner
- Case 2A: SE-SMR with indirect oxy-natural gas combustion calciner
- Case 2B: SE-SMR with indirect oxy-biomass combustion calciner
- Case 3A: SE-SMR with indirect chemical-looping combustion of natural gas calciner
- Case 3B: SE-SMR with indirect chemical-looping combustion of biomass calciner

Model development

- >The process modelling and mass-energy balance calculations used for the techno-economic analysis were performed by Aspen Plus V10.
- >A chemical plant cost estimation methodology developed by Sinnott et al. [1] for calculating the capital and operating costs is employed.

Results

Key performance indicators (KPIs)	Case 1A	Case 1B	Case 2A	Case 2B	Case 3A	Case 3B	3.00 2.50 (E) 30	800 -
Net efficiency (%)	77.0	70.5	73.7	66.3	74.1	69.4	₹ 2.00 <u></u>	
CO ₂ capture efficiency	60.1	86.1	100.0	100.0	100.0	99.7	1.50 COH (£/kg 10 mted cash	5 10 15 20 25 30 35 200
Capital costs (£m)	188.7	193.5	248.4	293.0	264.9	284.9	1.00 -10 1.00 -20 -30	
Operating costs (£m)	237.5	252.9	286.0	329.8	277.5	299.0	0.50 — — — — — — — — — — — — — — — — — — —	Year
LCOH (£/kg H ₂)	1.90	2.15	2.30	2.80	2.26	2.53		-Case 1A —Case 1B —Case 2A —Case 2B —Case 3A —Case 3I —Case 1A —Case 1B —Case 2A
CCA (£/tCO ₂)	33.0	45.7	57.3	68.6	54.4	52.9	Case 1A Case 1B Case 2A Case 2B Case 3A Case 3B Capital cost Fuel cost Fixed opex Variable opex	Fig. 2 Cumulative discounted cash flow of SE-SMR p
CCR (£/tCO ₂)	57.7	96.9	80.0	106.5	72.7	81.9	Fig. 1 Distribution of different costs of levelised	different hydrogen selling price

Conclusions

☐ The results revealed that the proposed systems were comparable with conventional steam methane reforming (SMR) with carbon capture and storage (CCS).

cost of hydrogen for different SE-SMR processes.

☐ The LCOH of the proposed SE-SMR plants ranged from £1.90-2.80/kg, and the costs of CO₂ avoided ranged from £33-69/tonne.

- \square By applying a carbon price (£16/tonne CO₂), the costs of CO₂ avoided for the proposed SE-SMR processes could be significantly reduced.
- \Box The results provide flexible options for blue and carbon-negative H₂ production.

References: [1] R. K. Sinnott, J. M. Coulson JFR. Coulson and Richardson's Chemical Engineering Volume 6 - Chemical Engineering Volume 6 - Chemical Engineering Volume 6 - Chemical Engineering Design (4th Edition). 2005. doi:10.1016/b978-0-08-041865-0.50014-3. [2] Y. Yan, D. Thanganadar, P.T. Clough, S. Mukherjee, K. Patchigolla, V. Manovic, E.J. Anthony, Process simulation of blue hydrogen production by upgraded sorption enhanced steam methane reforming (SE-SMR) processes, Energy Convers. Manag. 2 (2020) 1–36. [3] Y. Yan, P.T. Clough, V. Manovic, E.J. Anthony, Techno-economic analysis of low-carbon hydrogen production by sorption enhanced steam methane reforming (SE-SMR) processes