The Discovery & Development of Odanacatib

A Selective Inhibitor of Cathepsin K for the Treatment of Osteoporosis

Greg Hughes*,[†] Paul D. O'Shea,[†] Paul N. Devine,[‡] Bruce Foster,[‡] Don Gauthier,[‡] John Limanto,[‡] Matthew Truppo,[‡] David Pollard,[‡] John Naber,[†] Daniel J. McKay,[†] Ralph P. Volante[‡]

† Merck Frosst Center for Therapeutic Research, 16711 Transcanada Hwy, Kirkland, QC, H9H 3L1, Canada. ‡ Department of Process Research, Merck Research Laboratories, Rahway, NJ 07065, USA.

> 25th Process Development Symposium Churchill College, Cambridge, UK March 13, 2007

Outline

- Background
 - Justification for pursuing new Osteoporosis mechanisms
 - Biological Rationale for pursuing a Cathepsin K inhibitor
 - Medicinal Chemistry Summary
 - SAR development
 - Metabolism issues
 - Synthetic Approaches to L-873724 & MK-0822
- Chemistry used in the 1st GMP Delivery of MK-0822
- Development of a Manufacturing Route for MK-0822

Osteoporosis

- Decreased bone density and mass. Increased fracture risk.
- Estimated 200 million osteoporosis sufferers worldwide. Strikes ~1 in 4 women and 1 in 8 men over 50 ys.
- 650,000 hip fractures/yr in US-Europe. Majority caused by osteoporosis. 20% will die from fracture & 50% will be disabled.
- Cost of hospitalization in US-Europe : Currently ~ \$22 b/year.
- Need exists for improved therapies

Osteoclastic Bone Resorption

Bone resorption by osteoclasts is the initial step in remodeling

- Cathepsins have optimal activity at acidic pH found in lysosomes
- Cathepsin K is a cysteine protease highly expressed in osteoclasts
 - Efficiently degrades bone collagen
 - Cat K null mice have osteopetrotic phenotype, but otherwise healthy
- Cat K represents a promising target for the treatment of osteoporosis

Reversible Cat K Inhibitors

- 0.2 nM vs Cat K; 5 nM in osteoclast bone resorption assay
- >5000-fold selective over related cathepsins in purified enzyme assays
- Efficacious in monkey model of osteoporosis at 3 mg/kg/day
- Selectivity is lost in whole cell assays

Amide Replacement: Trifluoroethylamine

- Non-basic amine (pKa = 1.5) that it is not protonated at physiological pH
- Retains the H-bond donating properties of an amide bond

Bioorg. Med. Chem. Lett. 15 4741 (2005)

L-873724 has Similar Potency in Whole Cells and Purified Cathepsins

Inhibition of Cathepsins, IC ₅₀ (nM)							
	Cathepsin B		Cathepsin L		Cathepsin S		
	Enzyme	Cell	Enzyme	Cell	Enzyme	Cell	
L-006235	1100	17	6300	340	47000	790	
L-873724	5240	4800	264	1220	178	94	

Selectivity profile of L-873724 is maintained in whole cell assays

•

l -873724

Fixing Metabolic Liabilities

Medicinal Chemistry Synthesis of L-873724 & Odanacatib

Medicinal Chemistry Approach to L-837724

Medicinal Chemistry Approach to Fluoroleucinol

Scale-up Issues:

- A is expensive
- Formaiton & work up of 3° alcohol is tedious and irreproducible
- DAST is not a process friendly reagent
- Isolation of FI-leucinol requires continuous extraction (1 wk)

Synthesis of MK-0822

Aryl lithium addition to CF₃-imine

- 40 g of MK-0822 prepared to support characterization
- Oxidation state issues
- Protecting group manipulations
- Pd in final step
- HATU

Fluoroleucine-Retrosynthesis

Synthesis of F-Containing Electrophiles

OTs, I and Br analogues were insufficiently reactive electrophiles

Synthesis of Oxazolinones

Dynamic Kinetic Resolution of Oxazolinones

Limanto, J.; Shafiee, A.; Devine, P.N.; Upadhyay, V.; Desmond, R.A.; Foster, B.S; Gauthier, D.; Reamer, R.A. Volante, R.P. *J. Org. Chem.* **2005**, *70*, 2372 k_{rac}>>>k_S>>k_R

Limanto, J.; Shafiee, A.; Devine, P.N.; Upadhyay, V.; Desmond, R.A.; Foster, B.S; Gauthier, D.; Reamer, R.A. Volante, R.P. J. Org. Chem. 2005, 70, 2372

Fluoroleucine Synthetic Sequence

H₂SO₄H₂N CO₂Et

1 Isolation, 33% overall yield >250 kg prepared

Limanto, J.; Shafiee, A.; Devine, P.N.; Upadhyay, V.; Desmond, R.A.; Foster, B.S; Gauthier, D.; Reamer, R.A. Volante, R.P. *J. Org. Chem.* **2005**, *70*, 2372

Nucleophilic Displacement Route

"Two wrongs makes a right"

S_N2 Displacement Approach

Hagiwara, T.; Tanaka, K.; Fuchikami, T. Tetrahedron Lett. 1996, 37, 8187.

Hagiwara, T.; Ishizuka, M.; Fuchikami, T. Nippon Kagaku Kaishi 1998, 11, 750.

Katagiri, T.; Ihara, H.; Takahashi, M.; Kashino, S.; Furuhashi, K.; Uneyama, K. *Tetrahedron: Asymmetry*, **1997**, *8*, 2933.

Erosion of Stereochemistry is minimized by:

- lower temperatures
- non-polar solvents
- insoluble triflate salt
- concentrated reactions
- electron deficient substrates

Kg Scale Delivery - Displacement Approach

S_N2 Displacement Approach Issues with the Synthesis To be Addressed in Long Term Route

- Creates a stereocenter, then tries hard to retain it
- Not optimally convergent as the Suzuki coupling can not be performed off-line
- FI-leucine salt break
- These problem could both be addressed with a reductive amination approach:

Barriers to Reductive Amination with 2,2,2-Trifluoroacetophenones

Issues:

A. Dehydration of tetrahedral aminal intermediates.

C.L. Barney, E.W. Huber, J.R. McCarthy, *Tetrahedron Lett.* **1990**, *31*, 5547

B. Facial selectivity of the reductions.

Reductive Amination Approach Base Mediated Imine Formation

Hughes, G., Devine, P. N.; Naber, J. R.; O'Shea, P. D.; Foster, B. S.; McKay, D.; Volante, R. P., *Angew. Chem., Int. Ed.* **2007**, *45*, 1839.

Reductive Amination Approach Development of an (*S*,*S*) Selective Reduction

1 H_2 (1 atm), Pd(OH) ₂ /C, MeOH, rt601 : 22CatB-H, S-CBS (10 mol%), rt1001 : 53Red-AI, THF, 0°C100(40)1 : 264NaBH ₄ , THF/ H ₂ 0, rt100(86)1 : 255Zn(OTf) ₂ , CatB-H, THF, rt100(80)3 : 16NaBH ₄ ZnCle THE rt1002 : 1	Entry	Reduction Conditions	%Conv(%Yield)	(S,S) : (R,S)*
2 CatB-H, S-CBS (10 mol%), rt 100 1:5 3 Red-AI, THF, 0°C 100(40) 1:26 4 NaBH ₄ , THF/ H ₂ 0, rt 100(86) 1:25 5 Zn(OTf) ₂ , CatB-H, THF, rt 100(80) 3:1 6 NaBH ₄ , ZnCle, THE, rt 100 2:1	1	H ₂ (1 atm), Pd(OH) ₂ /C, MeOH, rt	60	1:2
3 Red-AI, THF, 0°C 100(40) 1 : 26 4 NaBH ₄ , THF/ H ₂ 0, rt 100(86) 1 : 25 5 Zn(OTf) ₂ , CatB-H, THF, rt 100(80) 3 : 1 6 NaBH ₄ , ZnClo, THE, rt 100 2 : 1	2	CatB-H, S-CBS (10 mol%), rt	100	1 : 5
4 NaBH ₄ , THF/ H ₂ 0, rt 100(86) 1 : 25 5 Zn(OTf) ₂ , CatB-H, THF, rt 100(80) 3 : 1 6 NaBH ₄ , ZnCl ₂ , THE, rt 100 2 : 1	3	Red-AI, THF, 0°C	100(40)	1 : 26
5 Zn(OTf) ₂ , CatB-H, THF, rt 100(80) 3 : 1	4	NaBH ₄ , THF/ H ₂ 0, rt	100(86)	1 : 25
6 NaBH, ZnCl, THE rt 100 2:1	5	Zn(OTf) ₂ , CatB-H, THF, rt	100(80)	3 : 1
	6	NaBH ₄ , ZnCl ₂ , THF, rt	100	2 : 1

* Determined by ¹⁹F NMR

Reductive Amination Approach Development of an (*S*,*S*) Selective Reduction

Entry	Solvent	Temp (°C)	Yield	(S,S) : (R,S) [*]
1	Toluene	23	90	1:1
2	MTBE	23	90	1.6 : 1
3	THF	23	90	2:1
4	MeOH	23	50	1:3
5	CH₃CN	23	90	8:1
6	CH₃CN	-10	95	17 : 1

* Measured by ¹⁹F NMR analysis

Kg Scale Delivery – Reductive Amination Approach

Biaryl Synthesis

Dolman, S.J.; Gosselin, F.; O'Shea, P.D.; Davies, I.W. Tetrahedron 2006, 62, 5092

Optimized Route

25% overall yield from isobutylene oxide

Conclusions

- Diastereoselective organometallic addition to trifluoroethyl imines generated from oxazolidines was developed.
- An asymmetric synthesis of fluoroleucine was developed using an enzyme mediated aza-lactone ring opening.
 - > 250 kg have been prepared.
- A first generation synthesis featuring an unprecedented S_N2 displacement of a chiral benzyltrifluoromethyl alcohol with an amino ester was developed.
 2.1 kg of Odanacatib prepared.
- A second generation synthesis featuring a new Zn(BH₄)₂ mediated syn selective reduction of a trifluoromethyl imine was developed.
 - >120 kg of Odanacatib prepared.

Acknowledgements

Process Research (Montreal):

Francis Gosselin Christian Nadeau Greg Hughes Danny Gauvreau Sarah Dolman Amelie Roy Philippe Dagneau

(Rahway):

Paul Devine Bruce Foster Don Gauthier John Limanto Rich Desmond Cheng Chen Bob Reamer Ian Davies Skip Volante

Process Research (T-Lab)

Ian Cottrell John Edwards Adrian Goodyear Mike Ashwood

(Biocatalysis):

Matt Truppo Dave Pollard Jeff Moore Ali Shafiee

(Polymorph/ Salt Screening):

Jen Chilenski Kara Somerville Louis Crocker

Analytical:

Tiebang Wang Tom Hooker Maria Ferrentino

Pilot Plant

Bill Izzo Adam Fine

Medicinal Chemistry

Laird Trimble Cameron Black Chun Sing Li Renata Oballa Jacques Yves Gauthier Vouy Linh Truong Dan Mackay