The Society of Chemical Industry "What A Chemist needs to know about Safety Assessment" 14/15 Belgrave Square, London Thursday 7th June 2007

SAFETY TESTING OF GENOTOXIC IMPURITIES

Mike O'Donovan

Safety Assessment AstraZeneca R&D Alderley Park, Macclesfield, UK

Mike.O'Donovan@AstraZeneca.com

MO'D 7/6/2007

SAFETY TESTING OF GENOTOXIC IMPURITIES

- Genetic Toxicology background
- Standard tests
- Test performance and SAR
- Current legislation and proposals Including Thresholds of Toxicological Concern (TTC)
- **Tracing a genotoxic impurity**

"Milestones" in pharmaceutical Regulatory Genetic Toxicity testing

	1973, 1975 Ames <i>et al.</i>	"Carcinogens are mutagens"
Difference between genotoxic and non-genotoxic	1980 1981 1983-6 1984	CPMP Guidelines DHSS Guidelines OECD protocols EEC Guidelines
carcinogens realised	1985	2 nd IPCS Collaborative Trial (Ashby et al.)
	1989	Revised DoH Guidelines
	1995 1997	ICH Topic S2A ICH Topic S2B ICH Topic M3
	2007	ICH S2 Revision: Step 2 expected October

Agents capable of causing direct or indirect damage to DNA

- Electrophilic species forming covalent adducts to DNA e.g. alkylating agents arylnitrenium ions diol epoxides of PAH etc
- UV and ionising radiations
- Reactive oxygen species
- Topoisomerase inhibitors
- Nucleoside analogues
- Protein synthesis inhibitors

Types of genetic damage known to be involved in carcinogenesis

	Detecte	ed by te	<u>est sys</u>	<u>stem</u>	Involvement in carcinogenes		
Lesion	Ames	MLA	IVC	BM.MN	Oncogene activation	Suppressor inactivation	
Base substitution	Yes	Yes			Yes	Yes	
Small deletion	Yes	Yes		Yes	Yes	Yes	
Large deletion		Yes	Yes	Yes		Yes	
Chromosome translocat	ion	Yes	Yes	Yes	Yes	Yes	
Mitotic recombination		Yes			?	Yes	
Chromosome loss				Yes		Yes	

MLA mouse lymphoma *tk*IVC in vitro chromosome aberrationsBM.MN rodent bone-marrow micronucleus

REGULATORY REQUIREMENTS FOR PHARMACEUTICALS

ICH Topics:

- S2A: Guidance on Specific aspects of Regulatory Tests for Pharmaceuticals (Adopted by CPMP September 1995; published in Federal Register April 1996)
- S2B: Genotoxicity: a Standard Battery for Testing of Pharmaceuticals (Adopted by CPMP September 1997; published in Federal Register November 1997)
- M3: Timing of Pre-Clinical Studies in Relation to Clinical Trials (Adopted by CPMP September 1996; published in Federal Register November 1997)

http://www.ich.org/cache/compo/276-254-1.html

ICH Topic S2B

3. The Standard Test Battery for Genotoxicity

- i) A test for gene mutation in bacteria
- ii) An *in vitro* test for cytogenetic evaluation of chromosomal damage with mammalian cells OR An *in vitro* mouse lymphoma TK assay
- iii) An *in vivo* test for chromosomal damage using rodent haematopoietic cells

ICH Topic M3

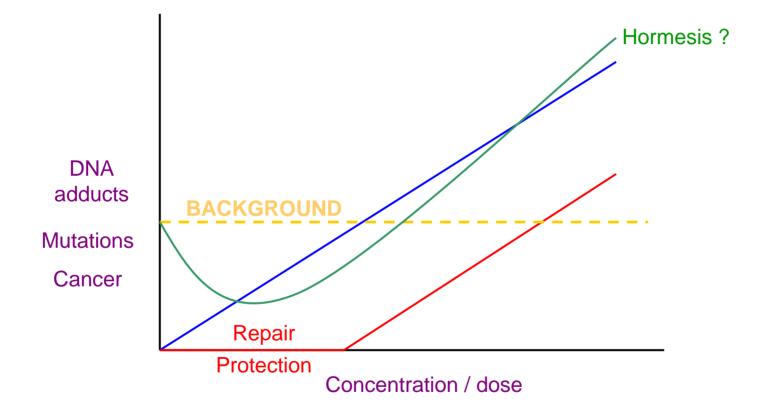
7. Genotoxicity studies

Prior to first human exposure, in vitro tests for the evaluation of mutations and chromosome damage are generally needed. If an equivocal or positive finding occurs, additional testing should be performed.

The standard battery of tests for genotoxicity (Topic S2B) should be completed prior to the initiation of Phase II studies

Regulatory interpretation of genotoxicity data

"Thresholds do not exist for DNA-binding chemicals"


"According to current regulatory practice it is assumed that (in vivo) genotoxic compounds have the potential to damage DNA at any level of exposure and that such damage may lead/contribute to tumor development. Thus for genotoxic carcinogens it is prudent to assume that there is no discernible threshold and that any level of exposure carries a risk."

CHMP Guideline on the limits of genotoxic impurities (2006)

- Thresholds are accepted IF a mechanism showing lack of direct interaction with DNA can be demonstrated
- Important to determine whether or not positive results are a consequence of DNA adduct formation

Regulatory interpretation of genotoxicity data

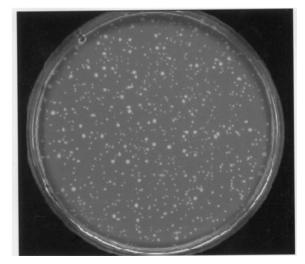
Endogenous levels of DNA adducts

(~6 x10⁹ nucleotides/cell)

Oxidative damage	8-oxo-guanine,	1 in 10 ⁵ -10 ⁶ nucleotides
Alkylation	O ⁶ -methylguanine,	1 in 10 ⁶ -10 ⁷ nucleotides
Lipid peroxidation	Etheno adducts,	1 in 10 ⁷ -10 ⁸ nucleotides
Smoking/pollution/diet	Bulky/PAH adducts,	1 in 10 ⁷ -10 ⁸ nucleotides
	(De Bont & van Larebeke.	Mutagenesis 2004; 19: 169-185)

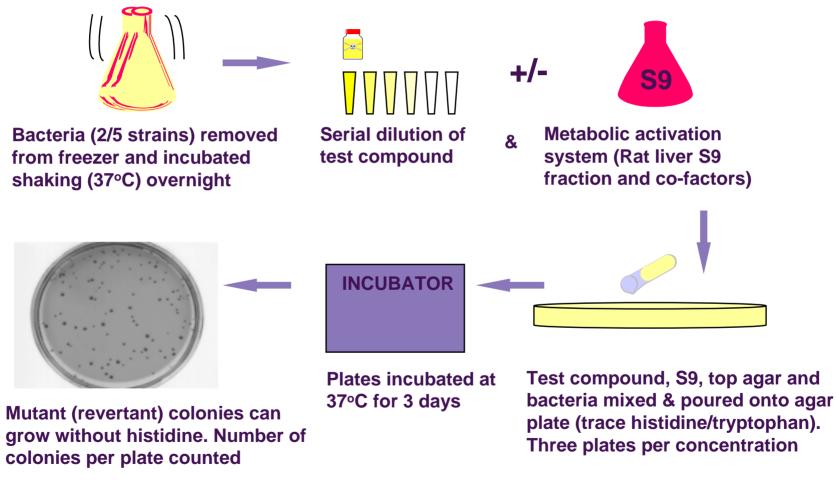
 ~ 20,000 DNA lesions per cell per day (Drablos et al. DNA Repair 2004; 3: 1389-1407)

STANDARD TESTS



MO'D 7/6/2007

- Uses strains of Salmonella typhimurium and Escherichia coli
- □ Strains have defined mutations making them require specific amino acids
 - S. typhimurium histidine
 - E. coli tryptophan


Back mutation allows growth in medium without histidine or tryptophan

MO'D 7/6/2007

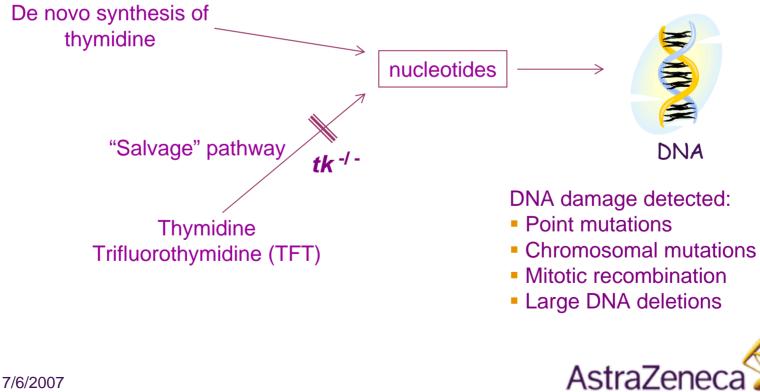
□ Bacterial strains constructed to detect a range of mutagens

- Salmonella strains are DNA repair-deficient (uvrB)
- Increased cell wall permeability
- Error-prone repair on pKM101 plasmid

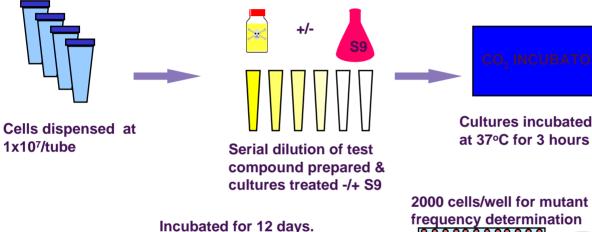
<u>Strain</u>	Reversion event
TA1535 & TA100	Base-pair substitution
TA1537 & TA98	Frame-shift
E.coli <i>uvr</i> A pKM101	Base-pair substitution Excision-repair proficient (detects cross-linking agents)

OECD Guideline 471

 Highest level tested: determined by solubility determined by toxicity 5000 µg/plate (free acid/base)

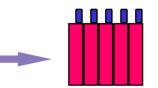

Amount of compound required
80 mg (2-strain screen)
2 g (5-strain regulatory test)

Strains used (AstraZeneca)
Screen TA98 & TA100
GLP TA1535, TA1537, TA98, TA100; E.coli *uvr*A pKM101


Mouse lymphoma TK assay

 \Box Forward mutation of mouse lymphoma ($tk^{+/-}$) cells at the thymidine kinase locus

MO'D 7/6/2007


Mouse lymphoma TK assay

frequency determination TF

Cultures incubated

at 37°C for 3 hours

Cultures washed, diluted to 2x10⁵/mL& incubated 24 hr. Cultures counted, subbed to 1.5x10⁵/mL& incubated for another 24 hr

Wells containing small & large mutant clones scored

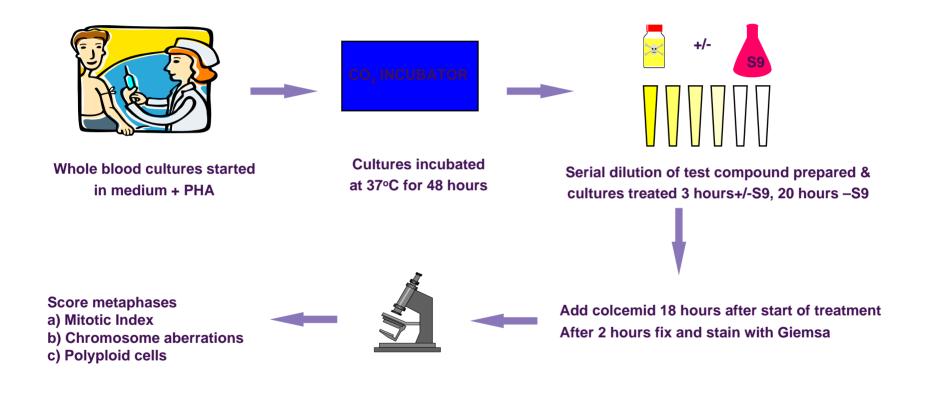
Mutant frequency calculated (number mutants per 10⁻⁶ viable cells)

Incubated for 8 days. Wells containing viable clones scored

1.6 cells/well for cloning efficiency determination

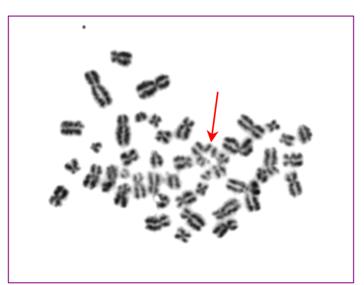
AstraZenec

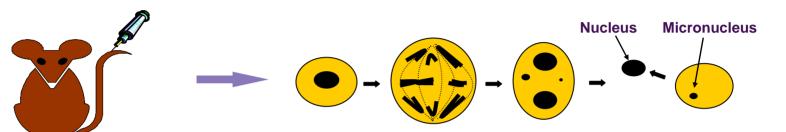
Mouse lymphoma TK assay


OECD Guideline 476

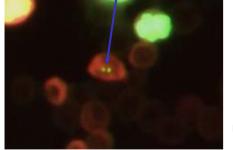
 Highest concentration tested: determined by solubility determined by toxicity 10 mmol/L or 5000 µg/mL (free base)

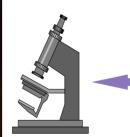
 Amount of compound required 200 mg (non-GLP)
~5 g (regulatory)


In vitro cytogenetics assay - lymphocytes

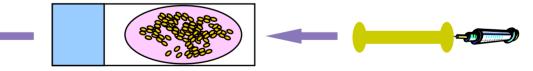

In vitro cytogenetics assay

- OECD Guideline 476
- Highest concentration tested: determined by solubility determined by toxicity 10 mmol/L or 5000 µg/mL (free base)
- Detects: large scale DNA damage aneugens as increases in ploidy




Rodent bone-marrow micronucleus test

Rats/mice dosed with compound, three doses, seven animals / group. Animals sacrificed 24 or 48 hours later


Micronucleus

2000 cells analysed per animal, number of micronucleated immature erythrocytes scored

Micronuclei may be formed by loss of whole chromosome during division or by chromosome breakage. The erythrocyte's nucleus is extruded leaving any micronuclei behind

Bone marrow cells spread onto slides. Slides fixed and stained (acridine orange)

Femurs removed and bone marrow aspirated

Rodent bone-marrow micronucleus test

- OECD Guideline 474
- Highest dose tested: 2000 mg/kg (free base) MTD
- Amount of compound required Up to 20 g depending on MTD
- Detects: chromosome breakage chromosome loss (aneuploidy)

TEST PERFORMANCE AND SAR

□ First extensive validation reported from Ames laboratory (McCann et al 1975)

- 90% (157/175) carcinogens positive (sensitivity)
- 87% (94/108) non-carcinogens negative (specificity)

□ Data for 241 chemicals from Sugimura's laboratory (Nagao et al 1978)

- Sensitivity 85% (136/160)
- Specificity 74% (60/81)

European trial – 82 carcinogens, 7 non-carcinogens (Bartsch et al 1980)

- Sensitivity 76%
- Specificity 57%

Detection of rodent carcinogens by standard in vitro tests

	Ames	MLA	Ames MLA
Sensitivity	318 / 541	179 / 245	389 / 436
	59%	73%	89%
Specificity	130 / 176	41 / 105	34 / 105
	74%	39%	32%

Sensitivity = proportion of carcinogens giving positive results

Specificity = proportion on non-carcinogens giving negative results (Kirkland et al. Mutat Res 2005; 584: 1-256)

New pharmaceutical compounds submitted to BfArM, 1990 – 1997

Muller and Kasper (2000) Mutat. Res., <u>464</u>, 19-34

Marketed pharmaceuticals listed in the PDR (1999)

Snyder and Green (2001) Mutat. Res., <u>488</u>, 151-169

Number of positive tests

Test system		armaceuticals 0-1997	PDR review 1999			
Bacterial mutation	23/298	8%	27/323	8%		
In vitro cytogenetics	77/266	29%	55/222	25%		
Mouse lymphoma tk	28/104	27%	24/96	25%		
In vitro mammalian hprt	6/162	4%	2/91	2%		
In vivo cytogenetics	19/283	7%	29/252	12%		

AstraZeneca (UK) data

5-strain Ames tests	4 / 110 Positive	(4%)
2-strain Ames tests	65 / 185 Positive	(35%)
Mouse lymphoma TK tests	25 / 132 Positive	(19%)
(Data from Alderley Park, 2	2002 – 2005)	

AstraZeneca SAR predictivity for bacterial mutagenicity

- MCASE learning set contains >4000 compounds
- □ DEREK >80 rules for in vitro mutagenicity
- ANN in-house dataset accumulating
- Predictivity of Ames test activity for 542 in-house structures
 - Negative predictions negative ~90%
 - Positive predictions positive ~75%
- Only ~5% of new Ames tests are positive
- 10-15% submissions return alerts
- Good filter to prioritise testing of discovery compounds
- □ Insufficient confidence to drop positive predictions
- Don't expect better predictivity for other SAR

Bacterial mutation test

- Ames test a good predictor of DNA reactivity
- □ SAR is accurate enough to focus testing

Mouse lymphoma TK assay or in vitro cytogenetics

- □ Has a higher incidence of positive results (20-25%)
- Detects agents inactive in bacterial systems
 - Topoisomerase inhibitors
 - Carbamates
 - Nucleoside analogues

IMPURITIES - CURRENT LEGISLATION AND PROPOSALS

□ ICH Q3A (R) – Impurities in New Drug Substances (2002)

□ ICH Q3B (R) – Impurities in New Drug Products (2006)

CHMP Guideline on the Limits of Genotoxic Impurities (2006)

- □ Further guidance required
 - ICH Q3A/B do not provide sufficient confidence for genotoxic impurities
 - CHMP does not consider compounds in development

PhRMA rationale (Müller et al. 2006)

CHMP Guideline on the Limits of Genotoxic Impurities

- Assumes no thresholds for DNA reactive agents
- Separates potential genotoxic impurities (PGI) into those with and without sufficient experimental evidence for threshold-related mechanisms e.g.
 - spindle disrupters
 - topoisomerase inhibitors
 - inhibitors of DNA synthesis
 - etc
- Impossible to define "safe" exposure to non-threshold genotoxins
- Pragmatic "Threshold of Toxicological Concern"

Threshold of Toxicological Concern (TTC) – origins

1958 Delaney Clause

(amendment to 1954 US Federal Food, Drug and Cosmetic Act) No food additive can be deemed safe, or given approval, if found to cause cancer in animals or man

- □ Justification experts unable to set absolutely safe levels for any carcinogen
- 1980's improvements in analytical technologies showed quantifiable traces of numerous substances in food
- 1979 US Court case involving Monsanto over leaching of a polymer from a drinks container allowed FDA to accept a negligible risk level of contamination

Threshold of Toxicological Concern (TTC) – origins

- Original work by Rulis followed by Gold, then Munro Low probability that 1ppb in diet will present a lifetime cancer risk >1 in 10⁶
- □ FDA "Threshold of Regulation" for trace substances from food contact materials 0.5ppb in 3kg food per day ⇒ 1.5 µg/day
- Carcinogenic contaminants justified without change to Delaney Clause
- □ TTC approach used in US1996 Food Quality Protection Act

CHMP Guideline – TTC

Linear extrapolation of animal data for 730 carcinogens

- □ Daily exposure to ≤ 1.5 µg/day for most carcinogens should not exceed a lifetime cancer risk of 1 in 10⁶
- □ High potency carcinogens include:
 - Aflatoxins
 - N-nitroso compounds
 - Azoxy compounds
 - I0-fold lower TTC

Numbers and fractions of compounds in different structural groups that are estimated to give a risk greater than one in a million at different intake levels

Structural Group	0.15	mcg	1.5	mcg	3 m	cg	6 m	cg	15 m	ncg	30 m	юg	60 m	icg	150 r	ncg	Total
	n	F	n	F	n	F	n	F	n	F	n	F	n	F	n	F	
Aflatoxin-like compounds	5	1															5
Aromatic amines	5	0.03	51	0.31	71	0.44	82	0.51	106	0.65	126	0.78	138	0.85	153	0.94	162
Aromatic nitrates	2	0.06	8	0.24	12	0.36	12	0.36	15	0.45	21	0.64	24	0.73	30	0.91	33
Azo compounds	0	0	9	0.50	9	0.50	10	0.56	12	0.67	14	0.78	16	0.89	17	0.94	18
Azoxy compounds	4	0.80	4	0.80	4	0.80	5	1									5
Benzidine derivatives	2	0.14	6	0.43	8	0.57	9	0.64	10	0.71	12	0.86	12	0.86	13	0.93	14
Carbamates	0	0	8	0.40	8	0.40	10	0.50	15	0.75	17	0.85	18	0.9	19	0.95	20
Heavy metal containing compounds	1	0.14	4	0.57	4	0.57	5	0.71	6	0.86	7	1					7
Highly chlorinated compounds	5	0.09	23	0.43	27	0.50	30	0.56	35	0.65	42	0.78	43	0.8	51	0.94	54
Hydrazines	2	0.04	30	0.53	35	0.61	37	0.65	47	0.82	47	0.82	52	0.91	56	0.98	57
Miscellaneous ashby alerts	2	0.05	5	0.12	8	0.2	13	0.32	25	0.61	32	0.78	34	0.83	36	0.88	41
α-Nitro Furyl Compounds	1	0.03	16	0.47	24	0.71	31	0.91	33	0.97	34	1					34
N-Nitroso Compounds	47	0.45	90	0.86	96	0.91	99	0.94	102	0.97	105	1					105
Organophosphorus compounds	0	0	5	0.29	5	0.29	6	0.35	8	0.47	11	0.65	14	0.82	15	0.88	17
Steroids	5	0.45	9	0.82	9	0.82	10	0.91	10	0.91	11	1					11
Strained rings	1	0.07	9	0.60	11	0.73	11	0.73	12	0.8	13	0.87	14	0.93	15	1	15
Tetrahalogenated dibenzodioxins and dibenzofurans (2,3,7,8)	2	0.40	2	0.40	2	0.40	2	0.40	3	0.6	3	0.6	3	0.6	3	0.6	5
Vinyl containing compounds	2	0.05	13	0.33	16	0.40	22	0.55	28	0.7	34	0.85	38	0.95	40	1	40

Absolute numbers of compounds (n) in various structural groups in the database that would give estimated risks greater than 1 in 10^6 if the intake were at values given in the column heading (calculated for a 60 kg person and an intake of 3 kg of diet per day) along with the fraction (F) of all members of each structural group.

From: Kroes et al. Food & Chemical Toxicology 2004; 42: 65-83

MO'D 7/6/2007

CHMP Guideline – TTC

□ Lifetime risk of 1 in10⁶ is conservative, since drugs have benefit

- Therefore, TTC limit based on **1 in 10⁵** l.e. \leq **1.5 µg/day**
- □ Higher levels if justifiable e.g.
 - Acute drug treatment
 - Life-threatening disease
 - Lack of alternatives
- Proposed level of acceptable risk consistent with other regulations
 - WHO drinking water standards
 - USEPA drinking water standards
 - FAO/WHO flavouring substances
 - Q3C limit set for benzene, 20 μg/day 1 in 10⁵
- 1 in 10⁵
- 1 in 10⁴ to 1 in 10⁶
- 1 in 10⁶

Limits for drugs before MAA/NDA ?

 CHMP not clear "Higher limits may be justified under certain conditions such as short-term exposure periods"
US PhRMA Genotoxicity Taskforce White paper Regulatory Toxicology and Pharmacology 2006; 44: 198-211

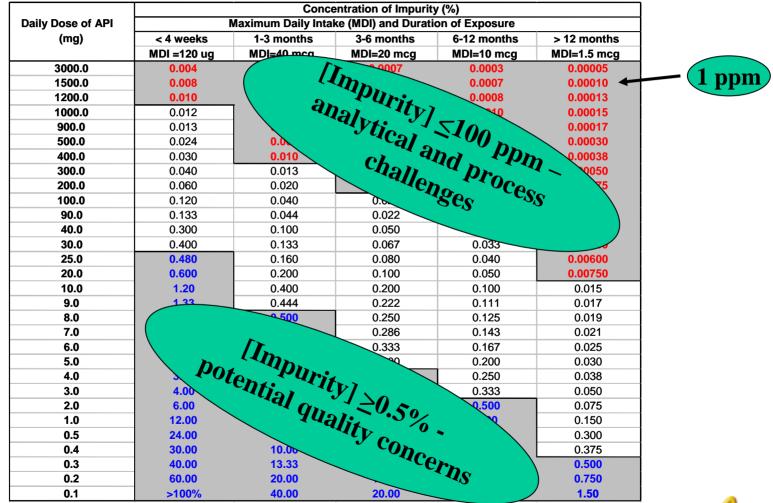
A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity

Lutz Müller ^{a,*}, Robert J. Mauthe ^b, Christopher M. Riley ^c, Marta M. Andino ^d, David De Antonis ^d, Chris Beels ^e, Joseph DeGeorge ^f, Alfons G.M. De Knaep ^g, Dean Ellison ^f, Jane A. Fagerland ^h, Rebecca Frank ⁱ, Betsy Fritschel ^j, Sheila Galloway ^f, Ernie Harpur ^k, Charles D.N. Humfrey ¹, Alexander S. Jacks ⁱ, Nirdosh Jagota ^m, John Mackinnon ^e, Ganapathy Mohan ^k, Daniel K. Ness ⁿ, Michael R. O'Donovan ¹, Mark D. Smith ^o, Gopi Vudathala ^k, Larry Yotti ^p

Represented:

Hoffmann-LaRoche, Pfizer, ALZA, GSK, Merck, J&J, Abbott, Noranco, Sanofi, AstraZeneca, Wyeth, Lilly, BMS

PhRMA Genotoxicity Taskforce proposal


Staged TTC approach for allowable daily intakes of genotoxic inpurities during all phases of clinical development

	Duration of Exposure (months)					
	<1	1 to 3	3 to 6	6 to 12	>12	
Allowable daily intake (µg)	120	40	20	10	1.5	
Alternative maximum	0.5%	0.5%	0.5%	0.5%	n/a	

Known carcinogens should have compound-specific risk calculated

 \Box Risk levels: up to 12 months 1 in 10⁶; over 12 months 1 in 10⁵

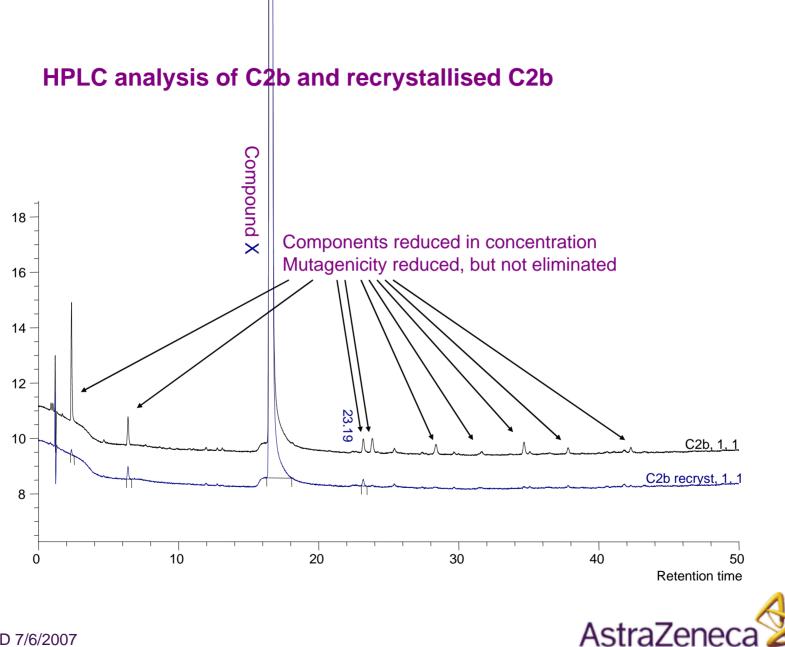
Relationship between Dose, Acceptable MDI and Concentration

AstraZeneca

MO'D 7/6/2007

TRACING A GENOTOXIC IMPURITY

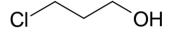
Compound X - Discovery batches:


Some evidence of bacterial mutagenicity, possibly due to impurities

Development batches:

C2a – no activity C2b – clearly active

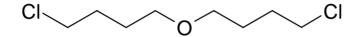
Compound X	Colonies/plate	e TA1535 +S9
µg/plate	Batch C2a	Batch C2b
Control	12	12
100	15	30
200	19	38
300	13	60
400	17	60
500	19	95
750	16	135
1000	22	130

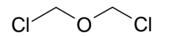


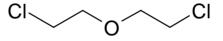
MO'D 7/6/2007

Compound X – Possible impurities

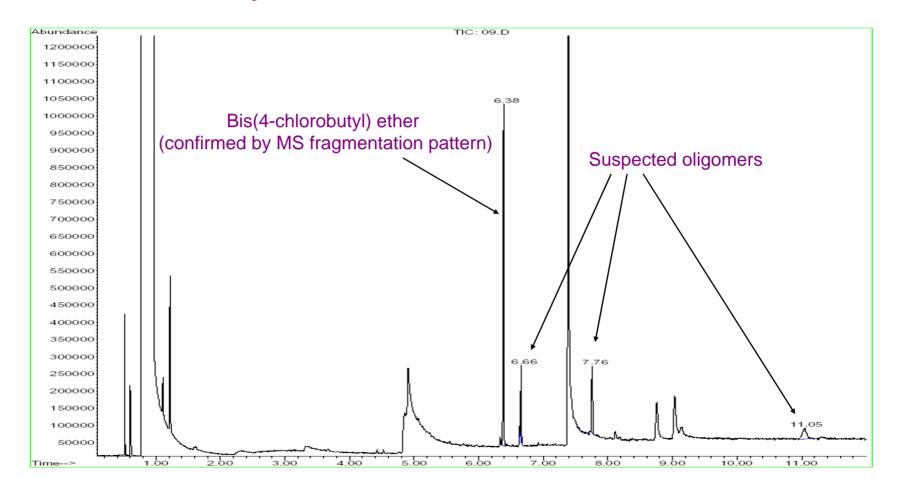
- Mutagenicity does not correspond to any drug-related material
- 4-Chlorobutanol known to be generated during synthesis
- 4-Chlorobutanol insufficiently potent to be responsible


	Colonies/plate	TA1535 +S9
µg/plate	Batch C2b	4-CB
Control	12	12
100	30	37
200	38	58
300	60	76
400	60	126
500	95	180
750	135	208
1000	130	297


Compound X - Possible impurities


□ bis(4-chlorobutyl) ether detectable in C2b

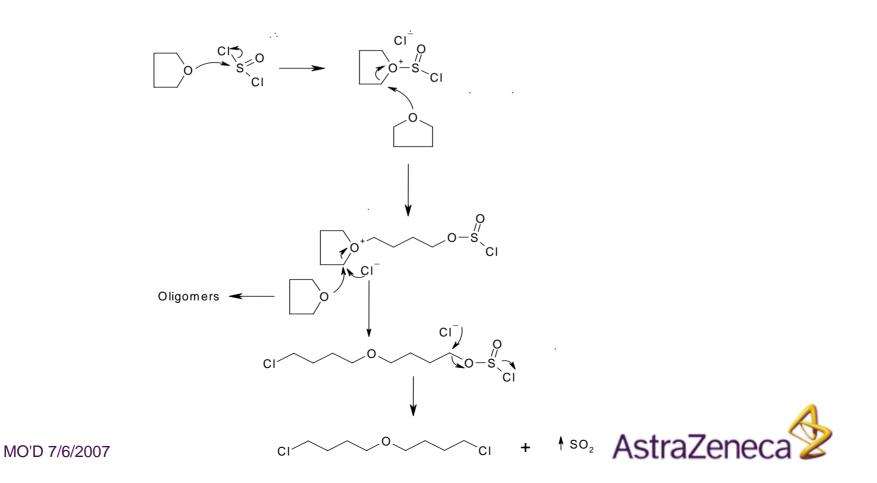
cf. bis(chloromethyl) ether (IARC human carcinogen)



□ Sufficiently active to account for the mutagenicity of C2b ??

GC-MS analysis of C2b material

MO'D 7/6/2007


Mutagenicity of bis(4-chlorobutyl) ether

	Colonies/plate TA1535 +S9						
µg/plate	Batch C2b	Bis(4-chlorobutyl) ether					
Control	12	15					
1.0		25					
3.3		31					
10		99					
33		276					
100	30	528					
200	38						
300	60						
330		1152					
400	60						
500	95						
750	135						
1000	130	1723					

Possible pathway to generate bis(4-chlorobutyl) ether

□ Precursor intermedate has a step where THF is refluxed with SOCl₂

Questions ?

MO'D 7/6/2007