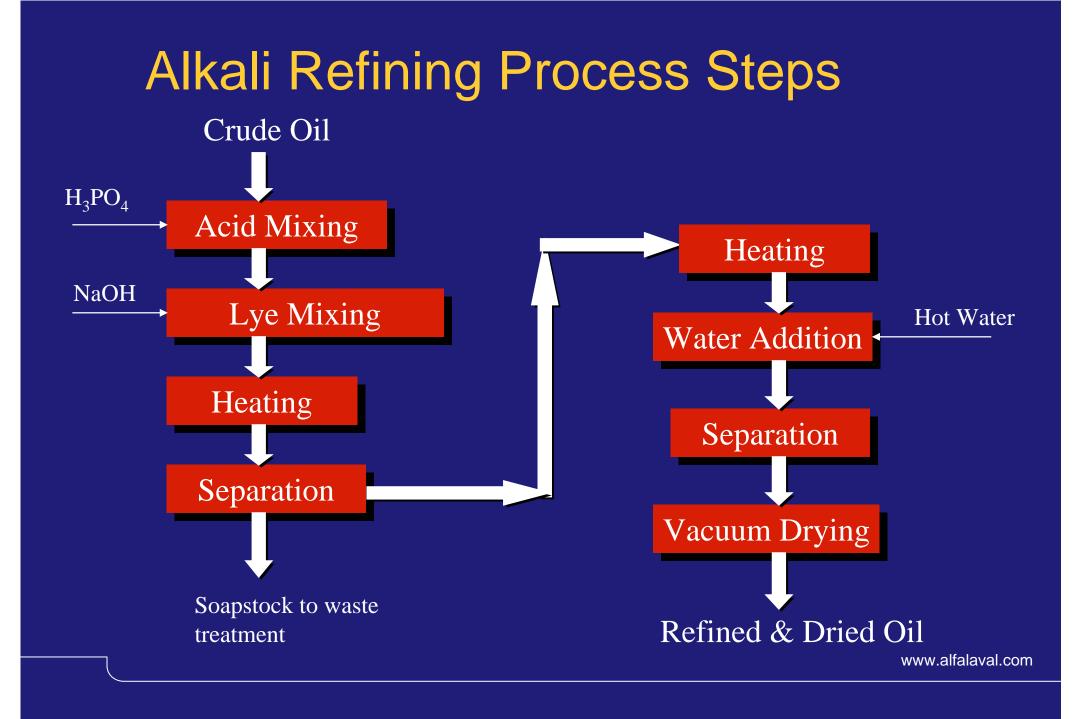
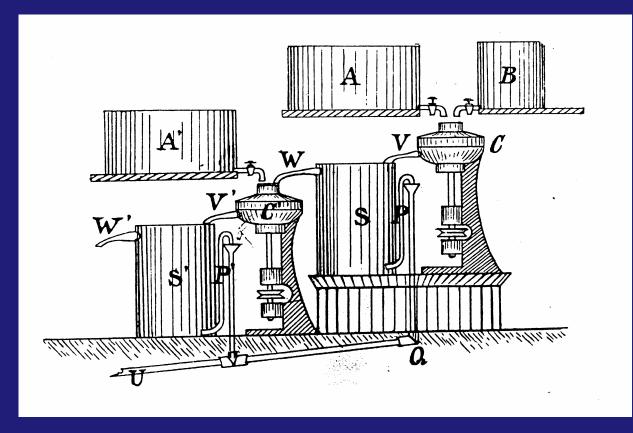


Basics of Alkali Refining & Water Washing of Vegetable Oils

Andrew Logan Alfa Laval Copenhagen A/S


Purpose of Alkali Refining

Removing of impurities from oil


- Phospholipids (gums)
- Colour bodies
- Metal lons Pro-oxidants
 - Iron
 - Copper
- Free Fatty Acids
- Solids meal fines

Oil Impurities

- Phospholipids
 - cause emulsions
 - darken oil with heat
 - interfere with crystallization
- Colour Bodies
 - Some have nutritional value
 - Remove to add consumer appeal & functionality in industrial uses (not heat stable)
- Metal lons
 - act as pro-oxidants degrading the oil quality & stability

Alkali Refining Plant - ca. 1892

Neutralization Reaction

$$\begin{array}{ccc} O & O \\ H \\ R - C - OH & + NaOH & \longrightarrow & R - C - O-Na & + H_2O \end{array}$$

Fatty Acid Caustic Soda

Soap

Other mechanisms

- colour bodies adsorbed onto soap
- phosphatides hydrated by water in lye
- chelated metal ions removed in soap

Amount of Neutralization Lye

Amount of lye = A * FFA * 1000 * k l/h 100 * M * N

where

A = oil flow (kg/h)

FFA = content of free fatty acids (%) *

k = factor for lye excess

M = molecular weight of the fatty acids (kg/mol) **

N = normality of the lye (mol/l)

Amount of Neutralization Lye (cont.)

* Content of free fatty acids has to be adjusted for addition of gum conditioning acid (0,1 % Phosphoric Acid corresponds to approx. 0,8 % FFA)

** Molecular weight of the fatty acids:

- Coconut/Palm kernal 200
- Palm 256
- High Erucic Acid Rapeseed 304
- Most other oils 282

Effect of Lye Excess

• Groundnut oil with 2,5 % FFA refined with 4,25 N lye

Lye excess (%)	FFASS (%)	Refining factor (excl. saponification)	Real refining factor (incl. saponification)
5	55	1,82	1,86
40	75	1,33	1,61
80	80	1,25	1,81

Effect of Acid Conditioning

Oil	Amount of	Soap content (ppm)		P – content (ppm)	
	acid % w/w	Neutral- ised oil	Washed oil	Crude oil	Washed oil
Rapeseed	0	1900	1200	250	180
"	0,15	1500	80	250	5
Sunflower	0	1600	500	320	90
"	0,05	1400	50	320	2
Corn	0	2100	1500	540	120
"	0,10	1100	80	540	4
Soybean	0	700	120	90	20
"	0,10	600	40	90	2

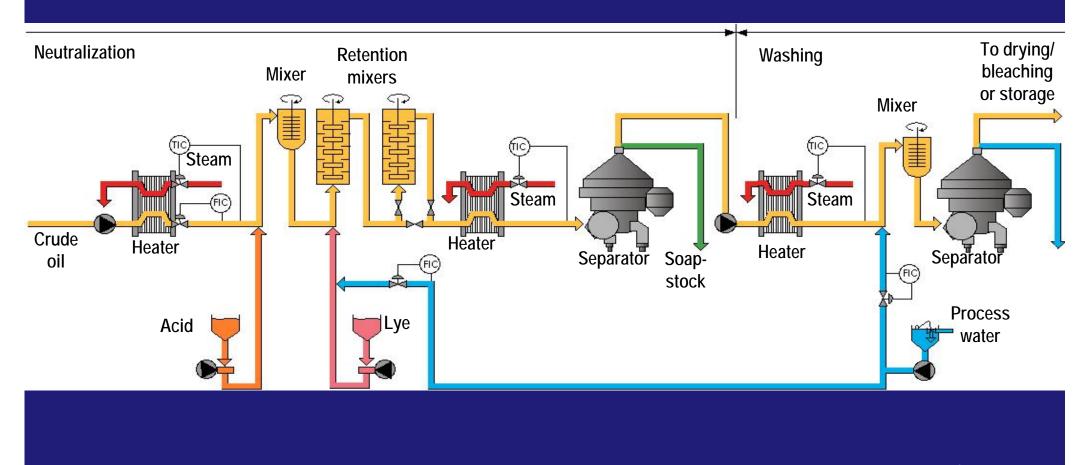
Washing and Drying

Washing

- Hot soft process water should be used

- 5 - 10 % of oil flow

Drying- 70 mm Hg vacuum


Refining Process - Selection

			P - content	
		< 200 ppm	> 200 ppm	
	< 1,5 %	Long-Mix or Multi-Mix	Long-Mix	
FFA	1,5 – 3 % > 3 %	Multi-Mix (2-stage)	Multi-Mix (3-stage)	

Long-Mix Process Steps

- Acid pre-treatment
- Lye mixing
- Retention mixing
- Emulsion break heating
- Centrifugal separation of soapstock
- Heat
- Water addition and mixing
- Centrifugal separation of wash water
- Vacuum drying of refined and washed oil

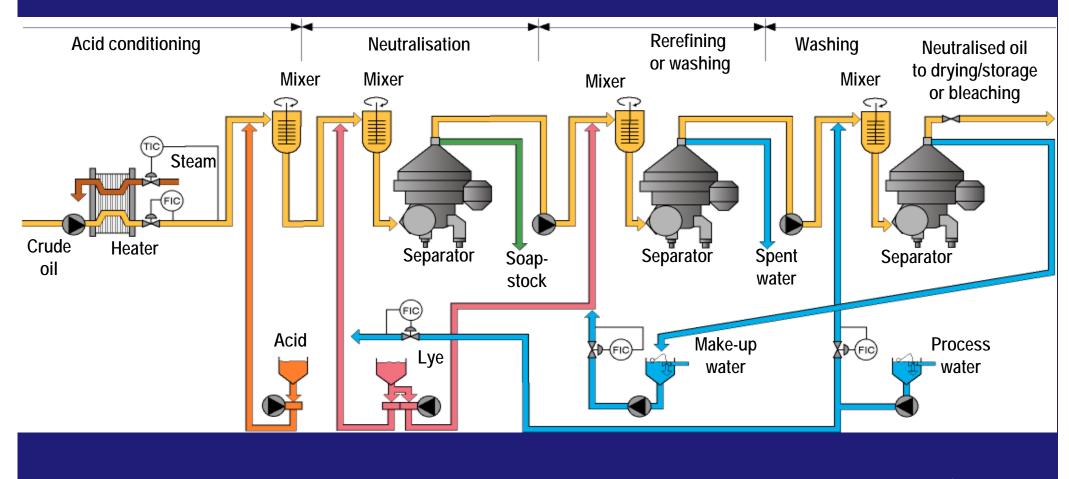
Long-Mix Process

Long-Mix – Lye Treat Conditions

	Strength (°Bé)	Excess (%)	Reaction time (min)
Crude seed oils	14 - 22	70 - 100	3 – 6
Degummed seed oils	16 - 26	35 - 70	2 – 5
Cottonseed	18 - 36	70 - 200	6 – 10
Corn	18 - 20	35 - 100	1 - 2

Long-Mix

Target Results


- Phosphorous in oil after S1 8 to 12 ppm, 20 ppm max.
- Soap in oil after S1 200 to 300 ppm, 400 ppm max.
- Phosphorus in oil after S2 max. 4 ppm
- Soap in oil after S2 max. 50 ppm
- FFA in oil 0,02 to 0,04 %, 0,05 % max.
- Moisture in oil max. 0,5 % or 0,05% if dried
- Loss = max. 0,8 + 1,25 x TL

Multi-Mix Process Steps

Heat

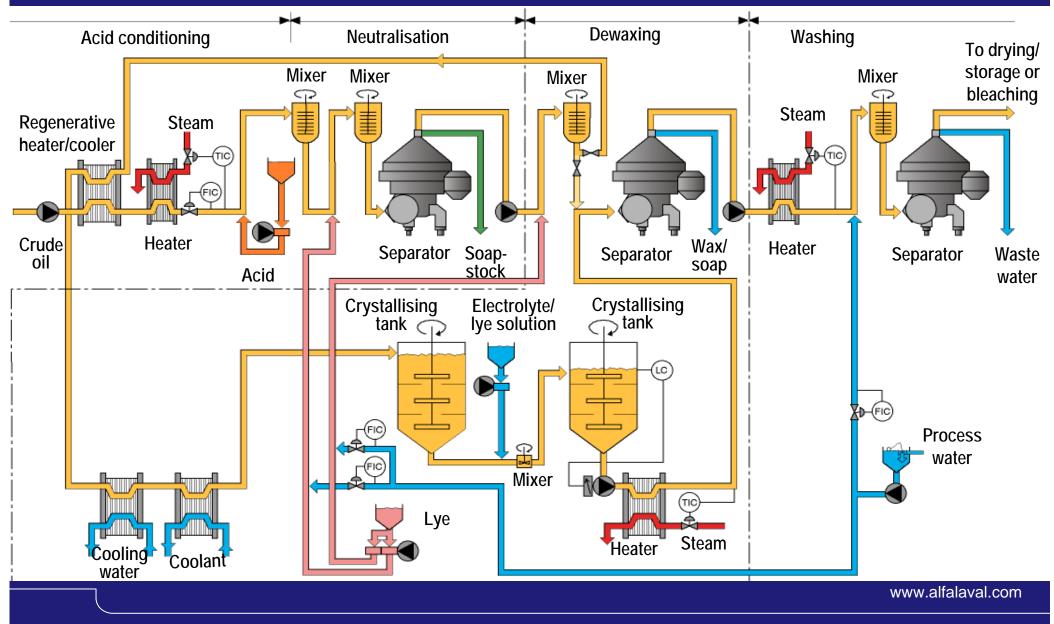
- Acid pre-treatment
- Lye mixing
- Centrifugal separation of soapstock
- Lye or water mixing
- Centrifugal separator of soapstock or wash water
- Water addition and mixing
- Centrifugal separation of wash water
- Vacuum drying of refined and washed oil

Multi-Mix Process

Multi-Mix – Lye Treat Conditions

	Strength (°Bé)	Excess (%)	Reaction time (sec)
Crude seed oils	20 - 28	30 - 60	15 - 30
Degummed seed oils	20 - 28	10 - 30	1 - 3
Cottonseed	20 - 28	10 - 50	>1
Anaimal & Fish	20 - 28	10 - 30	1 - 3

Multi-Mix


Target Results

- Phosphorous in oil after S1 8 to 12 ppm, 20 ppm max.
- Soap in oil after S1 500 to 700 ppm, 1000 ppm max.
- Phosphorus in oil after S3 max. 4 ppm
- Soap in oil after S3 max. 30 ppm
- FFA in oil 0,02 to 0,04 %, 0,05 % max.
- Moisture in oil max. 0,5 % or 0,05% if dried
- Loss = max. 0,3 + 1,25 x TL (+ 0,3 % if re-refining)

Multi-Wax Process Steps

- Heat
- Acid pre-treatment
- Lye mixing
- Centrifugal separation of soapstock
- Lye mixing
- Cool
- Crystallization
- Heat
- Centrifugal separator of waxes and soapy water
- Heat
- Water addition and mixing
- Centrifugal separation of wash water
- Vacuum drying of refined and washed oil

Multi-Wax Process

Multi-Wax

Target Results

- Soap in oil after S1 1500 to 2000 ppm, 2500 ppm max.
- Phosphorus in oil after S3 max. 4 ppm
- Soap in oil after S3 max. 50 ppm
- Wax removal min. 85 %
- FFA in oil 0,02 to 0,04 %, 0,05 % max.
- Moisture in oil max. 0,5 % or 0,05% if dried
- Loss = max. 0,7 + 1,25 x TL for 600 ppm wax content or max. 1,2 + 1,25 x TL for 1500 ppm wax content

Other Refining Process

Cold neutralization

- combined neutralization and dewaxing

- Miscella refining
 - neutralization in the miscella phase

Modified Caustic Refining (MCR)

Dry Refined Oil Quality Targets

- Soap < 30 ppm</p>
- Phosphorous < 2 ppm</p>
- Iron < 0.2 ppm</p>
- Copper < 0.01 ppm</p>
- FFA < 0.05%
- Moisture < 0.05%</p>