

What to expect?

- 1. REACH: objectives, requirements
- 2. Role of skin absorption data within REACH
- 3. Tools and their use
- 4. Conclusions

Registration - all manufacturers and importers

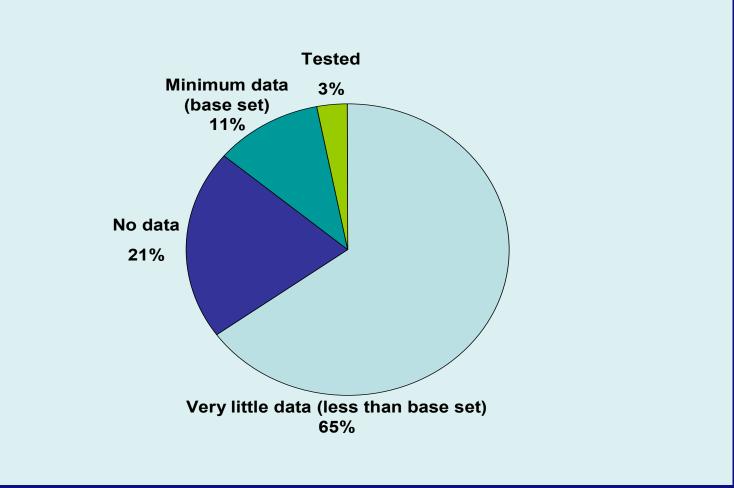
- substances produced/imported above 1 tonne/y

Evaluation - Agency (Helsinki) and Member States

Authorisation - substances of very high concern

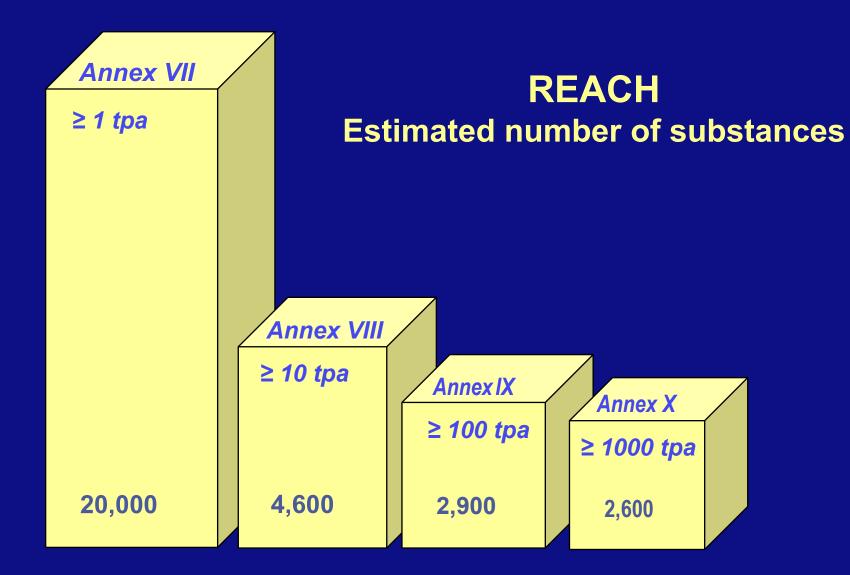
Restriction - 'safety net'

CHemicals



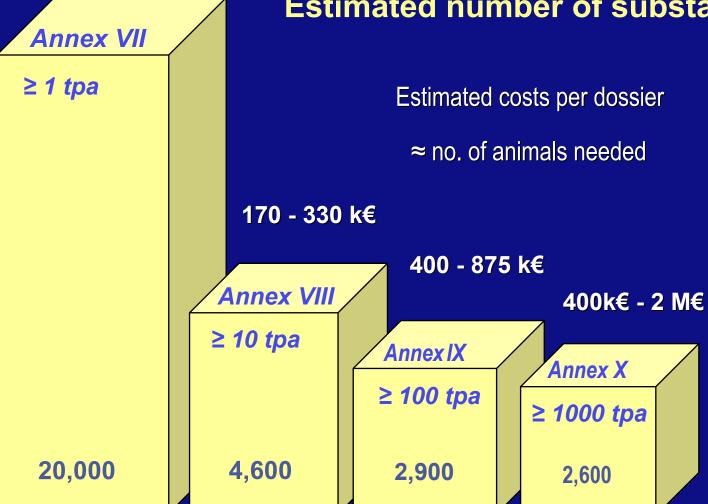
Political objectives

- Protection of human health and the environment
- Maintenance and enhancement of the competitiveness of the EU chemical industry
- Prevention of fragmentation of the internal market
- Increased transparency
- Integration of international efforts
- Promotion of non-animal testing
- > Conformity with EU international obligations under the WTO



Lack of knowledge on potential risks

Allanou R, Hansen BG, Van Der Bilt Y. 1999. Public availability of data on EU high production volume chemicals. Report EUR 18996 EN, European Commission, Joint Research Centre, Ispra, Italy.


Standard Information Requirements

Tonnage	Health	Environment
1 – 10 tpa	 In vitro skin and eye irritation Skin sensitization In vitro mutagenicity Acute toxicity (one route) 	 Acute aquatic toxicity -Daphnia Biodegradability and hydrolysis Algal toxicity
10 – 100 tpa	 In vivo skin and eye irritation Further in vitro mutagenicity Sub acute toxicity (28d) Reproductive toxicity screen 	 Acute aquatic toxicity – fish Activated sludge Adsorption / desorption screening
100 – 1000 tpa	Further mutagenicity testsSub-chronic toxicity (90d)Further reproductive toxicity tests	 Long term aquatic toxicity <i>Daphnia</i> and fish Further degradation and fate / behaviour studies Short-term effects on terrestrial organisms
>1000 tpa	Further mutagenicity testsCarcinogenicityChronic toxicityFurther reproductive toxicity	 Further degradation and fate / behaviour studies Long-term effects on terrestrial organisms

~30 k€

REACH Estimated number of substances

Dermal absorption information under REACH

No formal requirements, but....

Dermal absorption information under REACH Substances > 10 tonnes

Acute toxicity

Testing by the dermal route is appropriate if:

- (1) inhalation of the substance is unlikely; and
- (2) skin contact in production and/or use is likely; and
- (3) the phys-chem properties suggest a significant rate of <u>absorption</u> through the skin

Dermal absorption information under REACH Substances > 10 tonnes

Short-term (28 day) repeated-dose toxicity

Testing by the dermal route is appropriate if:

- (1) inhalation of the substance is unlikely; and
- (2) skin contact in production and/or use is likely; and
- (3) the phys-chem and tox properties suggest <u>potential for a</u> significant rate of absorption through the skin

Toxicokinetics

Assessment on the basis of available information

Dermal absorption information under REACH Substances > 100 tonnes

Sub-chronic (90 day) toxicity

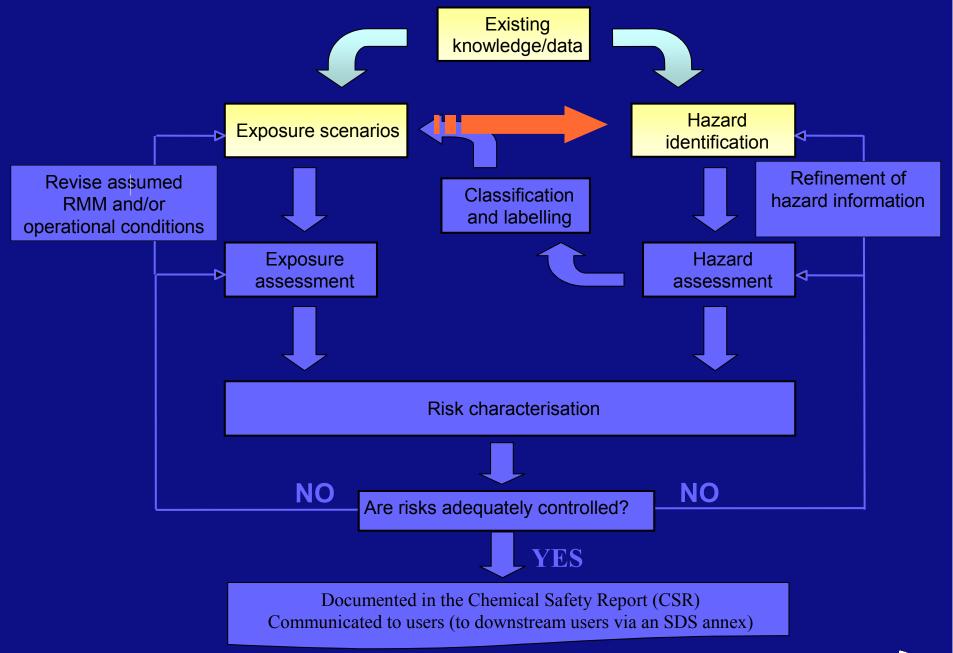
Testing by the dermal route is appropriate if:

- (1) skin contact in production and/or use is likely; and
- (2) the phys-chem properties suggest a significant rate of <u>absorption</u> through the skin; and
- (3) one of the following conditions is met:
 - toxicity is observed in the actute dermal toxicity test at lower doses than in the oral toxicity test, or
 - systemic effects or other <u>evidence of absorption</u> is observed in skin and/or eye irritation studies, or
 - in vitro tests indicate significant dermal absorption, or
 - significant dermal toxicity or <u>dermal penetration</u> is recognized for structurally-related substances

Dermal absorption information under REACH Substances > 100 tonnes

Reproductive toxicity

The studies do <u>not</u> have to be conducted if:


-

- the substance is of low toxicological activity (...), it can be proven from toxicokinetic data that <u>no systemic absorption</u> occurs via relevant routes of exposure (...) and there is no or no significant human exposure

Chemical Safety Assessment (CSA)

Exposure scenarios under REACH

- Process descriptions (incl. quantity used)
- Operational conditions
 (incl. frequency/duration of specified operations)
- Risk management measures
 (e.g. personal protective equipment)

Exposure scenarios under REACH

- Does (relevant) human exposure occur (worker, consumer)?
- Is the dermal route the dominant route of exposure?
- Quantification of dermal exposure?

Tools to obtain dermal absorption information

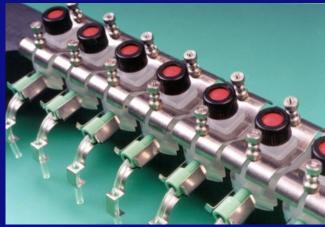
Dermal absorption information

Animal studies only as a last resort

Annex XI: Rules for adaptation of the standard testing regimes

- > Testing does not appear scientifically necessary
 - Use of existing data
 - Weight of evidence
 - Qualitative or Quantitative Structure Activity Relationships
 - In vitro methods
 - Grouping of substances and read-across
- Testing is technically not possible
- Substance-tailored exposure-driven testing

London - November 1, 2007


In vitro studies

Pro's - Detailed information

- Use of outcome (% of dose) in risk assessment
- No / very limited use of animals
- Formulated products

But - Need for valid and sensitive analytical method

- Costs & time

QSAR ('non-testing')

Pro's - Costs

- Time
- No use of animals
- No need for laboratory setting

But

- Use of outcome (flux, Kp) in risk assessment
- Dose, formulated products
- Applicability domain
- Accuracy of data

Sources of data

Data-rich compounds, high cost, low uncertainty, realistic

Biomonitoring / human PBPK model

B S O R

In vitro and/or animal studies

R P T I O

QSAR (non-steady state)

QSAR (steady state)

Assumption 100% absorption

X

0

U

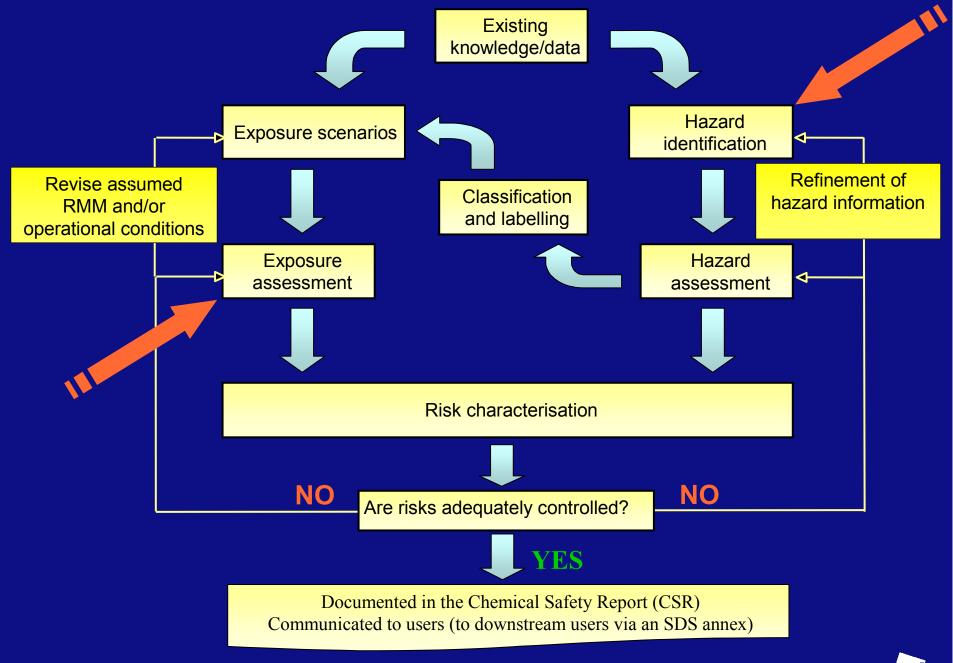
R

Field studies

Experimental studies

Probabilistic exposure modeling

Tier 1 assessment


Data-poor compounds, low cost, high uncertainty, worst-case

Many 'test' and 'non-test' procedures...

... which one to choose?

Use of dermal absorption data in CSA

Substantiation of 'no relevant internal exposure'

- yes/no answer (conservative approach)
- in conjunction with generic Exposure Scenario

Adjustment of 100% absorption for internal exposure assessment

- semi-quantitative (conservative categories)
- quantitative (predictive)
- in conjunction with specific Exposure Scenario

Classifying chemicals on the basis of J_{max}

Table 3
Classification of chemicals (on the basis of their physicochemical properties) in terms of their potential to be absorbed across the skin

$J_{\rm max} (\mu {\rm g/cm^2/h})$	MW (Da)	$\log P$	Category
$J_{\max} = 0$	Non-reactive chemicals > 1000 Da	Any	Negligible
$J_{\text{max}} \le 0.1$	> 300	< -1 or > 5	Low
$0.1 < J_{\text{max}} < 1.0$	$\sim 200-300$	> 2.0, 2.5	Medium low
$1.0 < J_{\text{max}} < 10$	$\sim 150-250$	$\sim 1.0-2.0$	Medium high
$10 < J_{\text{max}} < 100$	~60-200	$\sim 0.5-3.5$	High
$J_{\rm max} > 100$	<150	-0.5-2.0	High

 J_{max} , maximum flux; MW, molecular weight; $\log P$, \log of the octanol:water partition coefficient.

R. Kroes et al., Food and Chemical Toxicology (2007). Doi:10.1016/j.fct.2007.06.021

Default adjustment factors (cosmetic ingredients)

TP_{-}	14.1	1	- 4
- 120	100	HACK I	- 439
11.00	JUAN.	UNITED IN	-

Proposed default adjustment factors for the % dose absorbed of cosmetic ingredients across the skin

$J_{\text{max}} (\mu \text{g/cm}^2/\text{h})$	Default% dose absorbed per 24 h
Non-reactive chemicals with MW > 1000	Negligible
$J_{\rm max} < 0.1$	10
$0.1 < J_{\text{max}} < 10$	40
$J_{\rm max} > 10$	80

 J_{max} , maximum flux.

R. Kroes et al., Food and Chemical Toxicology (2007). Doi:10.1016/j.fct.2007.06.021

Conclusions

- > No formal information requirement on dermal absorption under REACH
- ➤ Information on dermal absorption is useful for route selection in toxicity studies and potentially for waiving of information requirements (reproductive toxicity)
- ➤ Various methodologies are available; the choice should be based on required accuracy of data
- ➤ Only by combining data on exposure and absorption, predictions can be made on the internal dose
- ➤ Defining (conservative) categories on the basis of QSAR outcomes, rather than relying on the exact prediction, could be a way forward to gain confidence in the predicted values.

References

- Kroes R et al., Application of the threshold of toxicological concern (TTC) to the safety evaluation of cosmetic ingredients, *Food and Chemical Toxicology* (2007). Doi:10.1016/j.fct.2007.06.021
- Van de Sandt JJM, Dellarco M and Van Hemmen JJ, From dermal exposure to internal dose, Journal of Exposure Science and Environmental Epidemiology (2007). Doi: 10.1038/sj.jes.7500579
- EDETOX (2004). Edetox database, University of Newcastle, UK. http://edetox.ncl.ac.uk
- Technical Guidance Document to Industry on the information requirements for REACH, final draft (2007). http://ecb.jrc.it/reach/rip/
- Bouwman T, Cronin MTD, Bessems JGM, Van de Sandt JJM (2006). Evaluation of published QSARs for percutaneous absorption. Toxicology Letters 164, S322.

Thank you for your attention

