Imperial College London # Photoelectrochemical H₂ Production Using Solar Energy **Stephen Dennison** Dept of Chemical Engineering, Imperial College, LONDON SW7 2AZ e: s.dennison@imperial.ac.uk #### Routes to Hydrogen Production adapted from J.A.Turner, Science 285, 687(1999) # Solar Energy to Hydrogen Project at Imperial - Development of alternative cost effective methods to produce renewable H₂, using low temperature photo-biological and/or photocatalytic processes. - To link this into novel, integrated energy production systems, closely coupling advances in science and engineering. - The work meets the strategic vision of Imperial College, and brings together the Faculties of Natural Science and Engineering under the umbrella of the Energy Futures Lab. - £4.2M grant awarded by EPSRC (started in October 2007) # **Energetics at the Semiconductor- Electrolyte Interface** #### **Energy Requirement for Photoelectrolysis** #### **Candidate Materials** - WO_3 : $E_g \sim 2.6 \text{ eV}$ - Fe_2O_3 : $E_g \sim 2.2 \text{ eV}$. - synthesised simply(?) by a variety of methods - low-cost - good starting point follow-on from work at Hydrogen Solar #### Fe₂O₃ Nanoparticle Preparation - Hydrothermal: - Fe²⁺/urea-glycine/100°C \longrightarrow Fe₂O₃/Fe₃O₄ - Precipitation: - $Fe^{2+}/95^{\circ}C \longrightarrow Fe_2O_3$ - Anodisation: - Fe electrode in glycerol + mineral acid: no anodic films ### Fe₂O₃ Photoelectrodes # As-Deposited EPD-Fe₂O₃ ## Annealed EPD-Fe₂O₃ ## Fe₂O₃ by Spray Pyrolysis #### **Photoelectrode Performance** | | Dip Coated | Electrophoretic | Spray Pyrolysis * | |--------------|----------------------|----------------------|-----------------------| | | | Deposition | | | | / Acm ⁻² | / Acm ⁻² | / Acm ⁻² | | | | | | | As-deposited | 3 x 10 ⁻⁶ | 6 x 10 ⁻⁴ | 1.22×10^{-3} | | Annealed ‡ | 1 x 10 ⁻⁶ | 7 x 10 ⁻⁵ | - | | | | | | ^{*} Produced at Hydrogen Solar: FeCl₃/SnCl₂ (1%) in EtOH [‡] 400°C in air for 30 min. #### **Future Work** - Materials development: - Improvements to Fe₂O₃ and other fabrication techniques - New materials: e.g. N-doped TiO₂. - Photoelectrochemical reactor design - Leading, ultimately, to a demonstrator system #### **Acknowledgements** - EPSRC for funding - Prof Geoff Kelsall and Dr Klaus Hellgardt - Colleagues in the Electrochemical Engineering Group and others in Chemical Engineering at IC