Enhanced Acidic and Catalytic Properties of Modified Sulfonic Acid Resins

D R Brown, H E Cross and P F Siril

Department of Chemical and Biological Chemistry, University of Huddersfield

Chitys/idiation/stations (***

1 Homogeneous Acid Catalysts: AICl₃, H₂SO₄, HF - DISPOSAL!!

Sulfonated polystyrene

Surface Acidity Characterisation

Base Temperature Programmed Desorption

Base Adsorption Calorimetry

NMR – direct or with probe (eg triethylphosphine)

IR – direct or with probe

Hammett Indicators (eg dicinnamalacetone pKa -3.0 benzalacetophenone pKa -5.6)

Enthalpy of NH₃ Adsorption (as a measure of acid site strength)

Enthalpy of NH₃ Adsorption (as a measure of acid site strength)

Molar enthalpy of adsorption of NH_3 vs. amount of NH_3 adsorbed on macroporous sulfonated polystyrene beads at 100 $^{\circ}C$

Catalyst	Reaction Rate /10 ⁻² μmol converted g ⁻¹ h ⁻¹	Specific Activity /10 ⁻³ μmol converted mmol ⁻¹ (-SO ₃ H) h⁻¹	Selectivity/ [Hexene]/[Ether]
Amb15 ([H ⁺] = 4.7 mmol g ⁻¹)	2.5	5.3	1.4
CT-175 ($[H^+]$ = 4.9 mmol g ⁻¹)	2.3	4.7	1.0
CT-275 ($[H^+]$ = 5.4 mmol g ⁻¹)	7.6	14.1	1.4

Catalyst	Reaction Rate /10 ⁻² μmol converted g ⁻¹ h ⁻¹	Specific ACTIVITY /10 ⁻³ μmol converted mmol ⁻¹ (-SO ₃ H) h ⁻¹	Selectivity/ [Hexene]/[Ether]
- Amb15 ([H⁺] = 4.7 mmol g ⁻¹)	2.5	5.3	1.4
CT-175 ([H ⁺] = 4.9 mmol g ⁻¹)	2.3	4.7	1.0
CT-275 ([H ⁺] = 5.4 mmol g ⁻¹)	7.6	14.1	1.4

NH₃ Adsorption from He

The shape of the calorimeter signal changes as the solid acid becomes progressively saturated - Signals for pulses 1, 6, 9, 11 and 13.

Liquid Titration Calorimetry Sulfonated Resins $\Delta H^{O}_{neut.}$ (NaOH)_{aq}- vs Concn "Internal Solution"

Liquid Titration Calorimetry Sulfonated Resins $\Delta H^{O}_{neut.}$ (NaOH)_{aq}- vs Concn "Internal Solution"

FT-Raman Spectroscopy - Hydrated Sulfonated Resins (H⁺ Form)

Degree of Acid Dissociation vs Concn of Internal Solution - FT-Raman Data

Conclusions

Sulfonated Polystyrene (Hydrated)

High sulfonation

- = reduced acid dissocation
- = increased acid strength
- = higher catalytic activity

Effective acid catalysts in water

Enhanced acid strength/activity not seen in other supported sulfonic acids

Sulfonated polystyrene

$$\begin{array}{c} 0 \\ H^{+} \\ 0 \\ H^{+} \\ H_{2} \\ 0 \\ H^{+} \\ H_{2} \\ 0 \\ H^{+} \\ H^{+}$$

Catalyst	Acid Site	$\Delta H^{o}_{neut.}$	Initial Rate (TON)
	Concentration	(aq. NaOH)	/mol (acid-mol) ⁻¹ min ⁻¹
	/mmol g⁻¹	/kJ mol⁻¹	
Polystyrene-SO₃H			
AMB-15	4.74	-58.3	2.5
AMB-35	5.4	-61.2	4.6
Silica-SO ₃ H			
MCM41-1	1.2	-54.6	2.7
MCM41-2	1.31	-54.9	2.7
MCM41-3	2.8	-54.5	2.7
SBA-15	1.15	-54.9	2.6
Aqueous Strong Acids			
0.1 mol dm ⁻³ HCl	-	-52.8	
0.5 mol dm⁻ ³ <i>p</i> -TsOH	-	-52.4	

Physical characteristics of Amberlyst resin powders

Sulfonated polystyrene resin (≤ 125 µm)	Cation exchange capacity ^a /mmol g ⁻¹	Surface area ^b /m ² g ⁻¹	Pore volume ^c /cm ³ g ⁻¹	Average pore size /nm
Amberlyst 70	2.55	1.0	0.002	29.3
Amberlyst 15	4.7	37.3	0.203	24.0
Amberlyst 35	5.2	40.7	0.218	24.2

- a Rohm and Haas data.⁵
- b BET adsorption isotherm using N_2 .
- c Total volume of pores with diameters 1.7-300 nm (BJH).

Physical characteristics of Amberlyst resin powders

Sulfonated polystyrene resin (≤ 125 µm)	Cation exchange capacity ^a /mmol g ⁻¹	Surface area ^b /m ² g ⁻¹	Pore volume ^c /cm ³ g ⁻¹	Average pore size /nm
Amberlyst 70	2.55	1.0	0.002	29.3
Amberlyst 15	4.7	37.3	0.203	24.0
Amberlyst 35	5.2	40.7	0.218	24.2

- a Rohm and Haas data.⁵
- b BET adsorption isotherm using N_2 .
- c Total volume of pores with diameters 1.7-300 nm (BJH).

Physical characteristics of Amberlyst resin powders

Sulfonated polystyrene resin (≤ 125 µm)	Cation exchange capacity ^a /mmol g ⁻¹	Surface area ^b /m ² g ⁻¹	Pore volume ^c /cm ³ g ⁻¹	Average pore size /nm
Amberlyst 70	2.55	1.0	0.002	29.3
Amberlyst 15	4.7	37.3	0.203	24.0
Amberlyst 35	5.2	40.7	0.218	24.2

- a Rohm and Haas data.⁵
- b BET adsorption isotherm using N_2 .
- c Total volume of pores with diameters 1.7-300 nm (BJH).

 $-\Delta H_{ads}^0$ /adsorbed NH₃ for Amberlyst resins at 100 °C by adsorption calorimetry, sample size 5 mg

 $-\Delta H_{ads}^0$ /adsorbed NH₃ for Amberlyst resins at 100 °C by adsorption calorimetry, sample size 20 mg

	Average	Total NH ₃	Cation exchange
Sulfonated	$-\Delta H_{ads}^{0a}$	adsorbed ^b	capacity ^c
resin	/kJ mol ⁻¹	/mmol g ⁻¹	/mmol g ⁻¹
Amberlyst 70	117 ± 2	1.65 ± 0.05	2.55
Amberlyst 15	110 ± 2	4.70 ± 0.10	4.7
Amberlyst 35	117 ± 2	5.20 ± 0.10	5.2
Nafion NR50	158 ± 4	0.85 ± 0.10	0.8

- a Average up to coverage where ΔH^{0}_{ads} falls below -80 kJ mol⁻¹.
- b coverage where ΔH^0_{ads} falls numerically below -80 kJ mol⁻¹.
- c Rohm and Haas data.⁵

	Average	Total NH ₃	Cation exchange
Sulfonated	$-\Delta H_{ads}^{0a}$	adsorbed ^b	capacity ^c
resin	/kJ mol ⁻¹	/mmol g ⁻¹	/mmol g ⁻¹
Amberlyst 70	117 ± 2	1.65 ± 0.05	2.55
Amberlyst 15	110 ± 2	$\textbf{4.70} \pm \textbf{0.10}$	4.7
Amberlyst 35	117 ± 2	5.20 ± 0.10	5.2
Nafion NR50	158 ± 4	0.85 ± 0.10	0.8

a Average up to coverage where ΔH^{0}_{ads} falls below -80 kJ mol⁻¹.

- b coverage where ΔH^0_{ads} falls numerically below -80 kJ mol⁻¹.
- c Rohm and Haas data.⁵

Sulfonated	Average	Total NH ₃	Cation exchange
suitonated	$-\Delta II$ ads $/1 \cdot I$ and $-1 - 1$		(mm al a-1
resin	/KJ IIIOI ⁺	/mmol g ·	/mmor g *
Amberlyst 70	117 ± 2	1.65 ± 0.05	2.55
Amberlyst 15	110 ± 2	4.70 ± 0.10	4.7
Amberlyst 35	117 ± 2	5.20 ± 0.10	5.2
Nafion NR50	158 ± 4	0.85 ± 0.10	0.8

a Average up to coverage where ΔH^{0}_{ads} falls below -80 kJ mol⁻¹.

- b coverage where ΔH^0_{ads} falls numerically below -80 kJ mol⁻¹.
- c Rohm and Haas data.⁵

	Average	Total NH ₃	Cation exchange
Sulfonated	$-\Delta H_{ads}^{0a}$	adsorbed ^b	capacity ^c
resin	/kJ mol ⁻¹	/mmol g ⁻¹	/mmol g ⁻¹
Amberlyst 70	117 ± 2	1.65 ± 0.05	2.55
Amberlyst 15	110 ± 2	4.70 ± 0.10	4.7
Amberlyst 35	117 ± 2	5.20 ± 0.10	5.2
Nafion NR50	158 ± 4	0.85 ± 0.10	0.8

- a Average up to coverage where ΔH^{0}_{ads} falls below -80 kJ mol⁻¹.
- b coverage where ΔH^0_{ads} falls numerically below -80 kJ mol⁻¹.
- c Rohm and Haas data.⁵

Catalyst	Isomerisation of α-pinene (conversion at 100 °C)	Benzylation of toluene (conversion of benzyl alcohol at 80 °C)
	Initial turnover frequency per acid site /h ⁻¹	Initial turnover frequency per acid site /h ⁻¹
Amberlyst 70	12	17
Amberlyst 15	47	13
Amberlyst 35	112	19
Nafion NR	1325	33

Catalyst	Isomerisation of α-pinene (conversion at 100 °C)	Benzylation of toluene (conversion of benzyl alcohol at 80 °C)
	Initial turnover frequency per acid site /h ⁻¹	Initial turnover frequency per acid site /h ⁻¹
Amberlyst 70	12	17
Amberlyst 15	47	13
Amberlyst 35	112	19
Nafion NR	1325	33

Catalyst	Isomerisation of α-pinene (conversion at 100 °C)	Benzylation of toluene (conversion of benzyl alcohol at 80 °C)
	Initial turnover frequency per acid site /h ⁻¹	Initial turnover frequency per acid site /h ⁻¹
Amberlyst 70	12	17
Amberlyst 15	47	13
Amberlyst 35	112	19
Nafion NR	1325	33

Catalyst	Isomerisation of α-pinene (conversion at 100 °C)	Benzylation of toluene (conversion of benzyl alcohol at 80 °C)
	Initial turnover frequency per acid site /h ⁻¹	Initial turnover frequency per acid site /h ⁻¹
Amberlyst 70	12	17
Amberlyst 15	47	13
Amberlyst 35	112	19
Nafion NR	1325	33

Hydrothermal stability of Amberlyst 70 compared to Amberlysts 15, 35 and 36

t (200°C)

Sulfur content by XRF - 200°C hydrotherm al

Acknowledgements

EPSRC DTI Royal Society Purolite International Ltd BP University of Huddersfield

Howell Edwards, University of Bradford Graham Fuller Colin Park Prem Siril Said Koujout Hannah Cross

α-pinene conversion to camphene at 100 °C

Acknowledgements

Prem Siril Said Koujout Mark Hart Graham Fuller Howell Edwards (Bradford)

Adsorption Calorimetry Gas/Vapour on Solid

Capacities of adsorbent/catalysts

Adsorption enthalpies

Adsorption rates

Desorption

Adsorption Calorimetry Gas/Vapour on Solid

Capacities of adsorbent/catalysts

Adsorption enthalpies

Strength/abundance of catalytic sites

Desorption

