Ion Exchange in Biodiesel Production

Biodiesel

Prepared by Terrence Heller Purolite Company

Purolite[®] for Biodiesel Purification

Resins used in Biodiesel Production Catalysis

Strong Acid Resin for Esterification of Fatty Acids (Developing) Strong Basic resins for trans-esterification (Not efficient)

Biodiesel Purification

Absorption of Free Glycerin Waters and Methanol Ion Exchange of Salts, Soaps and Catalyst

Glycerin Purification

Chromatographic separation of salts (Not used at this time) Color and ash removal (Not used at this time)

Trans-Esterification

Transesterification Converts Triglyceride (animal of vegetable oils)

to Methyl-ester (BIODIESEL)

Soybean

Purolite[®] PD206 Advantages

Purolite PD206	Water Wash	Inorganic Anhydrous Salts		
Operating Cost \$0.014/gal (\$0.0037/litre)	Reported cost \$0.08/gal (\$0.021/litre) for water and disposal	Reported cost \$0.12+ /gal (\$0.032/litre) due to filter equipment needed		
Low maintenance dry system	Medium to High maintenance Multiple washes, difficulty attaining < 500 ppm water	High maintenance replacing filters and removing sludge		
No need to filter	Minimal filtration still necessary	Heavy Filtration needed		
Low energy	High pumping and drying energy	Medium energy to circulate, settle and filter solids		
No waste disposal costs	Waste water treatment or water disposal issues	Disposal costs for spent media plus fire hazard		
No water required	Several water wash stages required.	No water required		
Page 4				

General Technical Data

PUROLITE® PD 206 PHYSICAL AND CHEMICAL PROPERTIES

ppearance	Hard spherical beads	
unctional	R-SO-3	
Froup		
onic form (as hipped)	HT	
loisture lolding apacity	<3 %	
Bulk Density	800-830 g/dm ³ (litre) (48-50 lbs/ft ³)	
pecific Gravity	1.20	
chemical Resistance	Insoluble in all common solvents	
perating emperature	<150 °C (<300 °F)	

5

F

Purification Towers Lag Vessel Lead Vessel **Final Polishing** Evacuation **PUROLITE[®] PUROLITE[®] PUROLITE®** Evacuation Evacuation Port Port Port **PD206** PD206 **PD206** Purified B100 Crude Biodiesel **OPERATING INFORMATION** Freeboard >150% Flow rates 2.5-3.0 BV/h Ambient to 60° C (140 °F) Temperature Page 7 Minimum bed depth 60cm (24 inches) Screen size <150 microns

Operating Cost for Purolite® PD206

Polishing Vessels Before Demethylation

- Influent glycerin is commonly 2000ppm (0.2%)
- Lead tower
 - Washed with Methanol every 5-6 days
 - Replaced with new or regenerated resin every 2-3 months
- Attrition is <5-15% due to handling</p>
- Capacity loss negligible
 - Resin life estimated 5-7 years.
- Operating cost will be \$.014/gal (\$0.0037/litre) biodiesel using regenerated PD206

Polishing Vessels After Demethylation

 No Methanol washing only replacement of resin due to flashpoint criteria

Page 10

 Columns in final position after Demethylation has been reported to cost greater than \$0.10/gal (\$.026/L)

Methanol Wash removes free Glycerin

H⁺ form vs. Na⁺ Form Resin

Property	H+ Form	Na+ Form		
Viscosity of glycerin	Reduces viscosity for better absorption into the bead	High Viscosity glycerin absorbs on resin surface		
Catalyst removal	Absorption with glycerin	Absorption only with free		
	then ion exchanges in bead	glycerin		
MeOH requirement for washing	2-3 BV for 95% free glycerin removal	4 BV suggested due to thicker glycerin		
MeOH wash frequency	Approx 3-5 days depending on glycerin loading	For similar sized towers Approx. twice as often as H ⁺ form resin		
H ⁺ Regeneration	Approximately 3-6 months to restore performance	None		
Capacity	.46 g Free Glycerin / g dry PD206	.11.5 g FG / g Wet resin		
Process downtime	good	Fair		
Page 13				

Before

TurbidityhighGlycerin.05 - .4%Water.05%Methanol1-5%Catalyst25-300 mg/kgSoap.1 - 3.0 mgKOH/g

Before After **PD206 PD206**

Meet ASTM / EN Specifications After **Turbidity** low Glycerin .001 - .01% (ASTM .02%) Water .002% (ASTM .05%) Methanol 1-5% no change Catalyst <2 mg/kg TAN = Soap (ASTM .5 mg KOH/g)

Returning Resin for Regeneration

- When PD206 exhausts with catalyst of soap functional sites are converted to Na of K.
- Conversion back to H form not possible at plant
- Where regeneration facilities are convenient as in the eastern USA resin can be returned to Purolite and convert to H form
- This reduces operating cost by approx 25%
- Reduces solid waste generation
 - Resins can be used several years with negligible lose of operating capacity

- No solid or liquid waste disposed at the plant.
- Shipping used resin requires flamable solid placard.

Summary / Status

- Ion Exchange is a prominent component for purification of Biodiesel
 - Primarily for Dry polishing Process
- Best application is free glycerin removal before demethylation
- A 3 tower lead lag application is most effective
- Methanol wash will extend operating life of resin and reduce cost
- Catalyst removal is achiever with resin polishing before and after demethylation
- Regeneration offered (USA and Canada)
 - reduce waste resin
 - Purolite recognized as a full service supplier
 - Handling and shipping details must be followed
 - Green Technology reduces demand on petroleum based raw materials