Sugar syrup decolourisation using a continuous fluidised bed ion exchange process

Michael O'Shea¹, Thomas Dahlke², Stephen Staunton¹ and Glenn Pope³

¹ BSES Limited, Brisbane and Cairns, QLD, Australia
 ² Orica Watercare, Melbourne, VIC, Australia
 ³ Mulgrave Central Mill, Gordonvale, QLD, Australia

Outline

- The Australian sugar industry and project partners
- Laboratory trials on MIEX[®] resin decolourisation
 - various process streams
 - colour levels and volumes
 - degree of colour removal required to have an impact
 - resin contact time and treatment cycles needed
- Pilot plant results 2006 and 2007
- Plans for further pilot work during 2008 crushing season

Australian Sugar Industry - scale

- Cane area: 560,000 ha
- Cane harvested: 36 Mt
- Raw sugar: 4.3 Mt (bulk handled) 85% exported
- Sales : \$1.5b per year (2nd largest export crop)
- Employs 40,000 people

Orica Pty Ltd

- Global business turnover > US\$3 Billion
- 13,000 employees in over 40 countries
- Diverse product range
 - Mining Services explosive/blasting solutions
 - Consumer Products Paints/handyman products
 - Chemnet Chemical Trading in Asia/Pacific Region
 - Chemicals Services manufacturing and services
 - Watercare conventional and advanced water treatment solutions provider (MIEX[®])

Mulgrave Central Mill

Mulgrave Central Mill was established in 1896 and exists as a grower co-operative

- Processes cane from 300 farms across 17,000 hectares
- Annual harvests last 22-24 wks, processing 1.3 Mt of cane to produce 160,000 t raw sugar
- The mill operates a 232 km railway system, allowing cane transport across the district with no impact on local roads
- Self-sufficient for electricity and exports surplus to the grid

BSES Limited

BSES is the principal research, development and extension organisation serving the Australian sugar industry

BSES Sugarcane for the future Our role is to deliver realised value across strategic and applied research efforts

The BSES R,D&E Team

160 total staff (approx 100 directly involved in R,D&E)

Research Programs

- * Plant Improvement
- Cropping Systems
- Technology Support
- Crop Protection/Biosecurity
- Biotechnology

Expertise

- * Agronomists
- Entomologists
- Plant pathologists
- Plant breeders
- Chemists and chemical engineers
- * Agricultural engineers
- ✤ Biotechnologists
- Agricultural Extension

You can find BSES here

Why do we want to remove colour??

- Improved raw sugar product
 - Lower colour
 - Reduced colour development upon storage
- Meet and/or exceed product and value specifications from export customers

Where is the value in reducing colour??

- Where is the added value??
 - Increased \$\$ value of raw sugar exports
 - Access to key markets/customers
 - Decreased production costs for refiners
- Recent precedents for processes to manufacture low colour factory raw sugars
 - WSM process (IEX)
 Dedini process (IEX)
 - SAT process (UF)
- Charcoal applications

Ion exchange process in a sugar factory

Ion exchange processes for factory application have been regularly examined

- technically feasible and attractive
- economically unsound (usually)

Major problems include :

- short cycles due to heavy salt loads in juice streams
- cost of regenerants
- waste regenerant disposal problems (GBRMP)
- speed of resin fouling
- cane quality variation (weather, variety etc)

MIEX[®] - Magnetic Ion Exchange resin

- strong-base macroporous ionexchange resin
- Iow particle size (200 µm diam)
- beads contain an evenly dispersed magnetic particulate
- beads act as weak individual magnets in solution
- resin designed to remove dissolved organic carbon (DOC) from drinking water

MIEX® Process – drinking water

- Large scale processes already exist
- 16 plants exist worldwide
- 10 more in planning and construction stages
- Largest plant : 112.5 ML per day
- Smallest plant : 0.3 ML per day
- Scalable to large size and can be modular
- Strong IP position production and application of MIEX[®] resin
- www.miexresin.com

MIEX[®] Process – drinking water (CSTR)

MIEX® process schematic – alternative design

2.5 MLD: Mt Pleasant, South Australia

Contactor

Regeneration System

Treated Water Tank

112.5 MLD: Wanneroo, Western Australia

Regeneration Tanks

Resin settling tanks

Contact tanks

Why does the MIEX[®] process work so well?

Rapid decolourisation kinetics

- Smaller beads (200 μm vs 500-2000 μm)
- Higher surface area to volume ratio
- Smaller resin inventories required

Uniform process stream quality

 Continuous process unlike traditional batched ion exchange applications

Process flexibility

- Stirred contact tank reactors
- Fluidised bed system (upflow chromatography)

Would it be effective for sugar colorants?

Could MIEX[®] work for sugar colorants?

- Sugar mills have no specific decolourisation process
- Other systems designed to produce "mill white" sugars (WSM, SAT, Dedini) are far more capital intense
- Significant process differences compared to water treatment – heat, density, high colour loadings
- Would there be other mill effects?? e.g. crystallisation rate, filtrability improvements, altered ash levels
- MIEX[®] may provide a system to tailor-make various types of better quality raw sugars

Laboratory trials - resin suitability

The following questions required answering.....

- 1. What colour (quantity and type) does the resin remove?
- 2. Under what mill conditions can it work?
- 3. Long term stability 50 Bx, 70°C, 12 weeks (chloride capacity analysed at 0,2,4,8,12 weeks)
- 4. Performance of resin after multiple regeneration cycles (colour loading at 50 Bx, 70°C, regeneration at 25°C with saturated brine)
- 5. Decolourisation of simulated factory process streams resin loading, contact time

What colour does the resin remove?

			Decolorisation efficiency (%)		
Experiment	Resin (g)	Time (min)	Industry resin	MIEX®	
Raw sugar syrup (64° Bx)	1	15	37	72	
11	1	15	31	71	
FRL	1	15	76	88	
	0.5	15	57	82	

- MIEX[®] removes colour from raw sugar better than equivalent doses of a "normal" ion exchange resin
- Similar behaviour on refinery sourced filtered raw liquor (FRL)

What colour does the resin remove?

Would it remove difficult colorants?

- Acid Maillard polymer tested the most difficult of the HMW colorants to remove during refinery decolourisation¹
- Much better performance at same dose rates

			Decolorisation efficiency (%)	
Experiment	Resin (g)	Time (min)	Industry resin	MIEX®
Acid Maillard sucrose syrup dosed at 1 mg/mL	3	15	97	99
Acid Maillard sucrose syrup dosed at 0.1 mg/mL	3	15	98	99.7
	1	15	62	99
"	1	5	36	92

¹ Lindeman P.F. and O'Shea M.G. (2001). Proc. Aust. Soc. Sugar Cane Technol., 23, 322-329

Under what factory conditions can it work?

- Settling rate tests examining...
 - Brix range 25 70 Bx
 - Temperature range 25 65°C
- Conclusions
 - Fastest settling rates for low Bx and high temperatures as expected
 - Suitable up to 50 Brix only (for contactor type application) due to settling rate limitation

Long term stability test

- Resin turned black at 1 wk
- Resin capacity not affected
- 12 wk data typical of long term drinking water plant results (1.8 meq/g after 10 months)

Positive conclusions

Performance across regeneration cycles

Cycle	Abs	Colour	RI	Concentra tion, g/mL	True Reduction, %
1	0.359	9399	1.4046	0.050	42.3
2	0.417	9926	1.4039	0.0499	39.0
3	0.425	10448	1.4075	0.0524	35.8
4	0.457	10803	1.4036	0.0497	33.7
5	0.457	11029	1.4089	0.0535	32.3
6	0.444	10304	1.4064	0.0517	36.7
7	0.479	10933	1.405	0.0507	32.9
8	0.486	11040	1.4131	0.0565	32.2
9	0.481	10999	1.4016	0.0483	32.5
10	0.467	10677	1.4016	0.0483	34.4
55 Brix	0.442	16284	1.432	0.07	0

- 5 min contact, 65°C, 55 Bx raw sugar syrup
- Relatively constant decolourisation efficiency after first few cycles (around 34%)
- Morphology unchanged during regeneration regime
- No osmotic shock to resin beads (breakage)

% Decolourisation vs Brix (contact time)

Decolourisation (relative)

- Exhibits logarithmic behaviour
- Increases with time up to 5 min
- Reduces with increasing Brix
- Improves with multiple passes (not shown)

% Decolourisation vs Brix (resin dose)

2 minute contact time - One Pass

Decolourisation (relative)

- Increases with increasing resin dose
- Reduces with increasing Brix
- 80% decolourisation only achieved for < 20 Bx (2 min)
- Calculate resin requirement for % decolourisation, brix and contact time combination

% decolourisation vs resin dose (Brix)

2 Minute Contact, One Pass

- Log relationship between % decolourisation and resin dose
- Multiple passes would provide higher decolourisation rates
- Resin dose rates here unrealistic (too high)

% decolourisation vs resin dose (Brix)

- Lower resin doses and 5 min contact time
- This provides a basis for choosing factory conditions
- But we still need to understand syrup colour to sugar colour relationships, and define target sugar colour

2006 and 2007 pilot trials

- Pilot apparatus fluidised bed system or upflow chromatography column
- 2.4m high, 1.9m diam
- Distribution plate, gravel bed and sparger in base
- Designed upflow 10m/hr in column and 5m/hr in disengagement zone
- Plumbed into Mulgrave tank farm and can be integrated into normal production

Typical operating conditions

Column height	5000 mm		
Syrup flow rate	20 m³/h		
Settled bed volume (calculated)	3.98 m ³		
Fluidised bed volume (calculated)	9.24 m ³		
Resin inventory (as suspension)	3800 L (initial)		
Operating temperature	60 – 70°C		
Approximate resin mass in column	836 kg (initial)		
Average contact time	Around 5 min at 20 m ³ /h flow		
Average syrup brix	40 – 45		

Typical exhaustion experiment

(60 bed volumes)

Typical exhaustion experiment

Take home messages

- Higher brix streams than 45 Brix cannot be treated under these conditions (viscosity, resin settling rates, loss of resin at overflow)
- Reproducible decolourisation behaviour across short (2hr) and long runs (12hr) – results not shown
- Pilot results confirmed laboratory studies
 - Logarithmic relationships between % decolourisation and both resin concentration and syrup brix
- One-off pan boiling experiment showed addition of decolourised syrup will result in lower raw sugar colour
 - Needs confirming on full pan scale

Plans for 2008

Process Optimisation

- Demonstrate on factory scale, that reductions in sugar syrup colour will reduce raw sugar colour
- Test suitability on remelt and recycle streams as potential large benefits are available
- Examine CSTR design as well as fluidised bed

Future Process Design

 Based on results, design large scale automated process for a market ready technology package

Commercial Framework and Product Support Requirements

 Establish necessary delivery protocols, accreditations and early commercial arrangements for market entry

Acknowledgements

Mulgrave Central Mill Alan Cramp

Orica Watercare

Brent Mathers Abigail Holmquist

BSES Limited

Alessia Mortari Kent Selby

Significant financial and in-kind assistance from all contributors

