

Review of Degumming and Refining Technologies

Andrew Logan Alfa Laval Copenhagen A/S

Physical Refining

Feedstock Parameters

- Seed Oil (Soybean, Rapeseed, Sunflower)
 - FFA $\leq 2\%$
 - higher FFA indicates low quality oil and may not be suitable for physical refining
 - Phosphorous <a>
 Sppm, <a>
 desired
 - Iron ≤ 0.2 ppm

Chemical Refining

Feedstock Parameters

Seed Oil (Soybean, Rapeseed, Sunflower)

- FFA $\leq 3\%$
- Phosphorous \leq 1200 ppm, \leq 200 ppm desired

Purpose of Degumming

- Commercial Lecithin production
- Prevent crude oil settling during storage or transport
- Waste water (prevent acidulation of gums)
- Physical Refining
- Reduction in neutralisation losses

Gums

- Two main types
 - Hydratable Phosphatides easy to remove
 - Non-Hydratable Phosphatides (NHP) hard to remove from oil
 - Some NHP removed with hydratables in water degumming
 - requires the use of a acid to convert to hydratable for complete removal

Gum content of various oils

Oil type	Phosphatides (%)	Phosphorus (ppm)
Coconut	0.02 - 0.05	10 – 20
Corn	0.7 - 2.0	250 - 800
Cottonseed	1.0 - 2.5	400 - 1000
Groundnut	0.3 - 0.7	100 - 300
Palm	0.03 - 0.1	15 – 30
Rapeseed	0.5 - 3.5	200 - 1400
Soya	1.0 - 3.0	400 - 1200
Sunflower	0.5 - 1.3	200 - 500

Water Degumming Process Steps

- Heat oil to 60 70 °C
- Water addition and mixing
- Hydration mixing 30 minutes
- Centrifugal separation of hydrated gums
- Vacuum drying of degummed oil
- Gums dried for edible lecithin or recombined in meal

Water Degumming

Water Degumming

Target Results

- Phosphorous in oil 50 to 200 ppm max.
- Al% in dried gums 65 to 70%
- Moisture in dried oil < 0.1%

Acid Degumming Process Steps

- Heat oil to 60 70 °C
- Acid addition and mixing
- Hydration mixing 30 minutes
- Centrifugal separation of hydrated gums
- Vacuum drying of degummed oil
- Gums recombined in meal

Acid Degumming

Acid Degumming

Target Results

- Phosphorous in oil 20 to 50 ppm max.
- Al% in dried gums 65 to 70%
- Moisture in dried oil < 0.1%

Major Deep Degumming Methods

- Alfa Laval Special Degumming
- Super/Uni Degumming
- TOP Degumming
- Organic Refining Process
- Soft Degumming
- Enzymatic Degumming

Deep Degumming

- Deep degumming utilizes a reagent like acid to chelate Iron, Calcium, and Magnesium away from the NHP complex. Once the Iron, Calcium, and Magnesium are removed from the NHP complex the phosphatide becomes hydratable
- Enzymatic degumming utilizes an enzyme to modify the NHP into a hydratable form.

Alfa Laval Special Degumming

- Heat oil to 60 °C
- 0.05-0.2 % Phosphoric Acid with intensive mixing
- Partially neutralise with dilute lye (hydration water)
- Gentle mixing and holding for 60 minutes
- Gums centrifugation
- Optional water wash step for lower phosphorous
- Oil drying

Alfa Laval Special Degumming

Alfa Laval 2-stage Special Degumming

Alfa Laval Special Degumming

Target Results

- Phosphorous in oil 20 to 30 ppm max.
- Phosphorous in oil 8 to 10 ppm max. with washing
- AI% in dried gums 50 to 60%
- Moisture in dried oil < 0.1%</p>

Deep Degumming Results

Process	Phosphatides (%)	Phosphorus (ppm)
Special Degumming	< 0.02	< 10
Super/Uni Degumming	0.01 - 0.04	5 - 15
TOP Degumming	0.01 - 0.02	5 - 10
Soft Degumming	< 0.01	< 5
ORP	< 0.02	< 10
Enzymatic Degumming	0.01 - 0.02	5 - 10
Ultrafiltration	< 0.01	< 5

Purpose of Alkali Refining

- Removing of impurities from oil
 - Phospholipids (gums)
 - Colour bodies
 - Metal Ions Pro-oxidants
 - Iron
 - Copper
 - Free Fatty Acids
 - Solids meal fines

Oil Impurities

- Phospholipids
 - cause emulsions
 - darken oil with heat
 - interfere with crystallization
- Colour Bodies
 - Some have nutritional value
 - Remove to add consumer appeal & functionality in industrial uses (not heat stable)
- Metal lons
 - act as pro-oxidants degrading the oil quality & stability

Alkali Refining Plant - ca. 1892

Neutralization Reaction

$$\begin{array}{ccc} O & O \\ H \\ R - C - OH & + NaOH & \longrightarrow & R - C - O-Na & + H_2O \end{array}$$

Fatty Acid Caustic Soda

Soap

Other mechanisms

- colour bodies adsorbed onto soap
- phosphatides hydrated by water in lye
- chelated metal ions removed in soap

Effect of Lye Excess

• Groundnut oil with 2,5 % FFA refined with 4,25 N lye

Lye excess (%)	FFASS (%)	Refining factor (excl. saponification)	Real refining factor (incl. saponification)
5	55	1,82	1,86
40	75	1,33	1,61
80	80	1,25	1,81

Effect of Acid Conditioning

Oil	Amount of	Soap content (ppm)		P – content (ppm)	
	acid % w/w	Neutral- ised oil	Washed oil	Crude oil	Washed oil
Rapeseed	0	1900	1200	250	180
"	0,15	1500	80	250	5
Sunflower	0	1600	500	320	90
"	0,05	1400	50	320	2
Corn	0	2100	1500	540	120
"	0,10	1100	80	540	4
Soybean	0	700	120	90	20
"	0,10	600	40	90	2

Washing and Drying

Washing

- Hot soft process water should be used

- 5 10 % of oil flow
- Drying
 - 70 mm Hg vacuum

Refining Process - Selection

		P - content	
		< 200 ppm	> 200 ppm
	< 1,5 %	Long-Mix or Multi-Mix	Long-Mix
FFA	1,5 – 3 %	Multi-Mix	Multi-Mix
	> 3 %	(2-stage)	(3-stage)

Long-Mix Process Steps

- Acid pre-treatment
- Lye mixing
- Retention mixing
- Emulsion break heating
- Centrifugal separation of soapstock
- Heat
- Water addition and mixing
- Centrifugal separation of wash water
- Vacuum drying of refined and washed oil

Long-Mix Process

Long-Mix – Lye Treat Conditions

	Strength (°Bé)	Excess (%)	Reaction time (min)
Crude seed oils	14 - 22	70 - 100	3 – 6
Degummed seed oils	16 - 26	35 - 70	2 – 5
Cottonseed	18 - 36	70 - 200	6 – 10
Corn	18 - 20	35 - 100	1 - 2

Long-Mix

Target Results

- Phosphorous in oil after S1 8 to 12 ppm, 20 ppm max.
- Soap in oil after S1 200 to 300 ppm, 400 ppm max.
- Phosphorus in oil after S2 max. 4 ppm
- Soap in oil after S2 max. 50 ppm
- FFA in oil 0,02 to 0,04 %, 0,05 % max.
- Moisture in oil max. 0,5 % or 0,05% if dried
- Loss = max. 0,8 + 1,25 x TL

Multi-Mix Process Steps

Heat

- Acid pre-treatment
- Lye mixing
- Centrifugal separation of soapstock
- Lye or water mixing
- Centrifugal separator of soapstock or wash water
- Water addition and mixing
- Centrifugal separation of wash water
- Vacuum drying of refined and washed oil

Multi-Mix Process

Multi-Mix – Lye Treat Conditions

	Strength (°Bé)	Excess (%)	Reaction time (sec)
Crude seed oils	20 - 28	30 - 60	15 - 30
Degummed seed oils	20 - 28	10 - 30	1 - 3
Cottonseed	20 - 28	10 - 50	>1
Anaimal & Fish	20 - 28	10 - 30	1 - 3

Multi-Mix

Target Results

- Phosphorous in oil after S1 8 to 12 ppm, 20 ppm max.
- Soap in oil after S1 500 to 700 ppm, 1000 ppm max.
- Phosphorus in oil after S3 max. 4 ppm
- Soap in oil after S3 max. 30 ppm
- FFA in oil 0,02 to 0,04 %, 0,05 % max.
- Moisture in oil max. 0,5 % or 0,05% if dried
- Loss = max. 0,3 + 1,25 x TL (+ 0,3 % if re-refining)

Multi-Wax Process Steps

- Heat
- Acid pre-treatment
- Lye mixing
- Centrifugal separation of soapstock
- Lye mixing
- Cool
- Crystallization
- Heat
- Centrifugal separator of waxes and soapy water
- Heat
- Water addition and mixing
- Centrifugal separation of wash water
- Vacuum drying of refined and washed oil

Multi-Wax Process

Multi-Wax

Target Results

- Soap in oil after S1 1500 to 2000 ppm, 2500 ppm max.
- Phosphorus in oil after S3 max. 4 ppm
- Soap in oil after S3 max. 50 ppm
- Wax removal min. 85 %
- FFA in oil 0,02 to 0,04 %, 0,05 % max.
- Moisture in oil max. 0,5 % or 0,05% if dried
- Loss = max. 0,7 + 1,25 x TL for 600 ppm wax content or max. 1,2 + 1,25 x TL for 1500 ppm wax content

Other Refining Process

Cold neutralization

- combined neutralization and dewaxing

- Miscella refining
 - neutralization in the miscella phase
- Modified Caustic Refining (MCR)

Dry Refined Oil Quality Targets

- Soap < 30 ppm</p>
- Phosphorous < 2 ppm</p>
- Iron < 0.2 ppm</p>
- Copper < 0.01 ppm</p>
- FFA < 0.05%
- Moisture < 0.05%</p>

