Syngenta BioFuels

Bruce Link Biomass Traits, SBI

Syngenta – a leading global agribusiness

Strong worldwide market presence

- A leader in crop protection
- Third in high-value commercial seeds

• 2007 annual sales were \$9.24 billion (USD)

- -80% in Crop Protection
- -20% in Seeds
- More than 21,000 employees in over 90 countries

Global R&D capabilities

BASEL/STEIN, SWITZERLAND Fungicides, Insecticides & Professional Products BRISBANE, AUSTRALIA Cane Research Collaboration

3 CONFIDENTIAL

Syngenta Biotechnology Inc. (SBI)

Biotech R&D Center

- Bioinformatics & Scientific Computing
- Enzymology and Protein design
- Plant Protein Expression
- Crop Transformation
- Plant Analysis & Immunology
- Patents and Licensing
- Regulatory Science
- Regulatory Affairs

Syngenta is the industry leader in R&D

Rank	2006 R&D spend \$ m	As % of sales
1 Syngenta	796	10%
2 Bayer	770	11%
3 Monsanto	739	10%
4 BASF	557	14%
5 DuPont	550	11%
6 Dow	350	10%

Source: Phillips McDougall, Syngenta

Syngenta research leadership in precision breeding

Gene discovery through genomic analysis

- Powerful tools to examine whole crop genomes
- Published rice genome
- Working on Corn >11,200 genes mapped
- Applications for marker assisted breeding and native traits discovery

Image: Constrained and the second a

Tapping genetic diversity for novel traits

- Genetic diversity is essentially an untapped resource
- Syngenta's integrated approach effectively leverages genetic diversity into elite products

Second generation input traits: Drought tolerance – combining GM and non-GM technology

- Drought during pollination leads to poor kernel set
- New technology would protect during drought conditions
- Multiple complementary approaches: native trait and functional genomics, transgenics
- Multiple new trait constructs are currently under evaluation in field trials

Agricultural biotech and renewable fuels

- 1st Generation renewable Fuel
 - Sugar and Starch to Ethanol
 - Limited volume Food vs Fuel?
 - Immediate solution to MTBE replacement
- Maximising yield is key
 - Genetics
 - Crop Protection
 - Biotechnology
- 2nd Generation renewable fuel
 - Agricultural, forestry and municipal waste
 - Sustainable at high volume
 - Does not compete with Food and Feed

For Syngenta, the path to efficient and sustainable renewable fuels will encompass three horizons

Today

Maximizing yield and decreasing pressure on key feedstocks

- Best genetics
- Optimized starch
- Protecting yield
- Facilitate crop production / availability

3-5 years

Innovating within the existing industry to maximize efficiency

- Tailored crops
- Tropical Sugar Beet
- Corn Amylase
- Processing changes

5+ years

Help make sustainable cellulosic conversion a reality

- Plant-expressed enzymes
 - -Self-processing biomass crops
 - -Plant made additive enzymes
- Improved feedstocks
- Biomass conversion process around key feedstocks

Syngenta Technology Development

Tropical Sugar Beet – a global opportunity

11

Expression of the amylase enzyme in corn

Potential benefits:

Processing flexibility

•Reduced chemical usage

•Reduced energy and water use

Potentially greater ethanol output per acre or per mill

Syngenta Biomass Program Cellulosic Ethanol

Why is Cellulosic Ethanol Hard to Achieve?

Highly Complex cell wall

- Hemicelluloses rich in xylose and arabinose
- Cross links
- Lignin
- Crystaline substrate
- Slow Enzymes
- Expensive Enzymes

Significant improvement required to make cellulosic ethanol cost competitive

* Including depreciation and margin for capital recovery, based on estimate US cost for biomass; not adjusted for different energy content

Source: NREL, SRI, UŠDA, Oil World, expert interviews, McKinsey analysis

15

Addressing key challenges to reduce cellulosic ethanol cost

*(1	Source optimum feedstock	Pretreatment (break up fiber)	Hydrolysis (Make sugars)	Fermentation (Sugars to fuel)	
Costs (USD/Gal.)*	\$0.15-1.15**	\$0.35 - 0.60	\$0.75-1.00	\$0.40-0.75	
(US		Total: \$1.8			
Key Challenges	 High cost of management and logistics 	 High cost of capital equipment 	 Low enzyme activity and expression 	 Non-robust C5 sugar fermenting micro-organisms 	
Syngenta Focus	 Feedstock productivity and management 		 Unique, evolved enzymes with low loading requirements Plant expressed enzymes 		
Collaborations to integrate process and reduce to practice					

Focused improvements will enable \$1.25 - \$1.50 USD/Gal. cellulosic ethanol

syngenta

16

Source: Syngenta analysis *Estimated costs in 2007, ** High variability due to management and logistics for certain feedstocks

Syngenta – Reducing the Concepts to Practice

- We have expressed multiple cellulases in plants
 - Exocellulases, Endoglucanases, Betaglucosidases and Hemicellulases
- Progress towards commercially relevant expression levels
- Early technology but will provide the lowest cost performance enzyme for cellulosic biomass conversion

Delivering the plant enzyme expression concepts

Subcellular targeting – important for cellulase expression

SV

Accumulation of active CBH1 cellulase in grain is dependent on sub cellular targeting

Each bar represents an independent event

CBH II cellulase expression in maize leaf

CBHII from collaboration with

Endoglucanase cellulase activity in maize leaf

syngenta

Plant produced cellulases perform like microbial cellulases in cocktails

Syngenta plant-expression capability for two concepts

	Summing States	
	Cane Corn	Soy
Description	 Enzymes expressed in the biomass that is to be processed (e.g. Corn, cane & beet) 	 Enzymes expressed in an "additive" protein crop (e.g. canola, soy)
Advantages	 "Self-processing" feedstock Lowest cost enzyme production Large amounts may be made 	 Flexible for different feedstocks Can be added after pretreatment Storage and transport possible
Challenges	 Process design around feedstock Limited application outside feedstock 	 Additional logistics necessary Carries some additional processing cost

syngenta

How will the world deliver enzyme cocktails?

Concept	Feedstock	Plant Additive	Microbial
Enzyme cost today \$/gal EtOH	\$0.05 - \$ 0.25	\$1 -10	\$0.75 -\$1.0
Enzyme cost at target \$/gal EtOH	Approx \$0	\$0.01 - \$0.1	Approx \$0.13
Capital need	Νο	Existing processor	Fermentation
Running Costs	Zero	Low	High
25+ M/Tonne/yr Enzyme capacity	Yes	Not certain	Capex Cost \$
24			— syngenta

Target assumes DOE enzyme cost reductions are met

What does this mean for wheat?

- Unlikely GM wheat will be first to market
- Abengoa has a 70M tonne/year cellulosic ethanol plant wheat and cereal straw – Salamanca Spain
- logen has a demo plant wheat and wood
- Syngenta will be the lowest cost enzyme producer
- Some of our product concepts rely on low cost active enzyme production in plants to apply to any feedstock
 - Wood, miscanthus, switch grass, corn stover, rice and wheat straw
- Import of formulated enzymes into the EU will be subject to a simplified approval process

Plant expression of cellulases will be critical to making cellulosic ethanol a commercial reality

Thank you

