

Furanics: versatile molecules applicable for biopolymers applications

Ed de Jong

Avantium Technologies BV, Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands E-mail address: ed.dejong@avantium.com

Outline of the presentation

- Why novel Biopolymers & Biofuels
- Avantium's approach
- Furanics as starting material for polyesters
- Key elements & learning points
- Conclusions

The ideal Biopolymer & Process

- Big market
- Comparable characteristics with commodity plastics
 - Tg
 - Molecular Mass
 - Transparency
 - Color
- Low raw material and production costs
- Proven technologies
 - Monomer production
 - Polymer processing
- High efficiency route
- Integration with current refineries

Avantium's approach

- Cheap & abundant renewable feedstocks: carbohydrates
 - Both C5 and C6 sugars
- Use of platform chemicals: furanics
- Discovery, screening and optimization by application of High Throughput Methodologies
- Catalytic, fixed bed process
- Partnering up- and downstream

HTT Methodology

HTT is about the Methodology – Not just technology:

IT IS THE COMPLETE WORK FLOW

Not just conventional experimentation faster

Working in new ways

Expanding the parameter space

Renewable Raw Materials

- Carbohydrates are excellent starting materials for the production bulk and specilalty-chemicals
- Intelligent usage of the intrinsic functionality already present in carbohydrates
- Furanics (HMF) identified as high potential starting material

Avantium's Approach to Catalytic

Biopolymers from Furan-based Monomers

Potential Monomers

Target Polymers from FDCA

Polyesters

- Polyamides
- Copolymers

Dimethyl 2,5-Furandicarboxylate

DM-FDCA

As Monomer in Polyester Synthesis

Transesterification

Production of Polyesters in Film Reactor

Establish appropriate conditions in reactor

High molecular weight, Low coloration

Parameters to change

- Catalyst catalyst mixtures
- Catalyst concentration
- > Temperature
- Reaction time

Production in larger scale

Diol	M _w	PD	T _g (^o C)	T _m (°C)	T _{cryst} (°C)	TG	
						T _{start} (°C)	$T_{inf}(^{\circ}C)$
Ethylene glycol	52000	2.81	86.2	211.4	160.3	312	394
1,3-propanediol	59300	2.57	56.9	171.9	140.0	312	392
2,2-dimethyl-1,3-propanediol	36000	2.28	67.5	199.6	143.3	294	408
1,4-butanediol	59100	2.52	44.5	171.5	115.3	286	388
Cis-2-butene-1,4-diol	11800	2.95	47.8	164.3	113.0	264	330, 341
1,6-hexanediol	53500	2.35	13.2	144.5	116.3	292	390
3-hexene-1,6-diol	37500	2.67	23.3	126.7	78.4	278	354
1,4-bis(hydroxymethyl) cyclohexane	33600	2.33	102	271	229	319	396

 $T_{start} = starting point of decomposition$

 T_{inf} = inflection point of TG curve

 T_{crist} = crystallization temperature

Outline of the presentation

- Why novel Biopolymers & Biofuels
- Avantium's approach
- Furanics as starting material for polyesters
- Conclusions & Future Steps

Conclusions:

Key elements & learning points

- High throughput methodologies necessary to accelerate process
 and product development
- Multidisciplinary and knowledgeable team essential
- Involvement of raw material suppliers in early stage
- Availability of large quantities necessary for testing
- Parallel process and application studies
- Involvement of application developers and end users for process and application know-how & future developments
- Early assessment of necessary product characteristics
- Early assessment of economics and consequent essential elements of process

Our Amazon Program in a Nut Shell

2009 - 2010 Time Frame

Testing **Application Development** Feedstock Process **Properties Plastics** Crops Conversion PRIM Lab-pilot Material **Fuels** properties C_5 / C_6 Pilot **Engine test** sugars

CONFIDENTIAL