

Commercial Benefit of Green Chemistry at a Large Business

Ciba UK plc (now part of BASF)

Bradford, UK

Content

- Company background
- Drivers and trends
- Case studies
- Concluding remarks

Company History

Ciba Water Treatment Business Line Raw Materials - Monomers - Products - Customers

Potential Drivers

Drivers – Oil Price

Oil crisis of 1970s starting point for many companies

- also current oil price major driver to investigate alternatives

World Price Trends 1950-2010

Historically new uses for agricultural crops needed – not any more!

Chemical v Biotech Processes

Success Criteria

For use of bio-based products and processes

- Improve profitability or lower cost
- Cost effective
- Equal or better technical performance than existing product
- Must not generate any more waste/toxic byproducts

The Supply Chain

What can bio contribute?

- Alternative feedstocks
- Biocatalysis
- Unique properties of bio-products for existing and new applications
- Biodegradability
- Bioremediation

The Ciba Green Approach

Consideration of trends and drivers for bio-based products

Audit of Company experience and history in this field

Survey of relevant chemistry & technology available

Generation of a series of project options

Recommendations for future R&D activities

Production of Acrylic Monomers

Acrylamide

Commodity chemical for water soluble polymers Global capacity >500,000 tonnes/annum

Acrylic Acid

World production: ~4 million t/a
Used for superabsorbents, resins, coatings, acrylic esters

Current Technology - Acrylamide

- uses specific grade of acrylonitrile
- most of process is separation of reactants

Current Technology - Acrylic Acid

Bio- Acrylamide Process

Acrylamide Evaluation: Monomer Impurities

By-product	Biocatalysed (ppm)	Cu catalysed (ppm)
1	nd (<2)	400
2	nd (<5)	7
3	nd (<50)	228
4	nd (<50)	554
5	nd (<10)	42
6	<20	46
7	80	24
8	446	110
9	nd	150

Product Evaluation

Performance Evaluation of Polymer

Bio-Acrylamide: Advantages

- Fundamentally simple
- Cost effective and scaleable
- Highly selective, environmentally benign catalyst
- Mild process conditions
- Low acrylonitrile concentration-greatly reduced hazard
- Robust process
- Little or no downstream processing

Acrylic Monomers from 3-Hydroxypropionic Acid

Monomers from 3-Hydroxypropionic Acid

Acrylic Acid by Fermentation

Acrylic Monomers from Glycerol

Mostly high temperature / pressure, catalytic reactions

Renewable starting material has no advantage unless cost is low

Concluding Remarks

We must align the technology to market needs

We need to develop cost-effective processes to be successful

We need to prepare for the future

A bio-based economy is a reality but it won't be applicable for everything