The use of target immobilised NMR screening to identify and develop fragment binders to Hsp90

Hot topics in drug discovery: finding the next lead 11 November 2009

John Porter UCB Celltech

Introduction

- Fragment based drug design (FBDD) is becoming a popular method of finding starting points for drug discovery programmes
- Wanted to evaluate FBDD in-house
- Key issue is the choice of screening method to identify fragment binders
- One such method is target immobilised NMR screening (TINS).
- Review our experiences in evaluating TINS to find fragment binders to Hsp90
 - Comparison with other screening methods
 - Some of the approaches that we have followed to develop the identified fragment hits

Fragment screening

Fragment screening

- Libraries are typically smaller as fragment chemical space is smaller
- Bind with high atom efficiency but with low affinity
- Greater hit rate
- Typically require biophysical screening methods
- Ideally require structural information on how fragments bind for rapid progression

Why Hsp90 to validate fragment screening?

- Protein is well-expressed (>100 mg/L)
- Crystallises readily
- >80 crystal structures in PDB
- NMR solution structure solved
- Precedented target for fragment screening (positive controls available)

Heat Shock Protein 90 (Hsp90)

- HSP90 is an ATP-dependent molecular chaperone
- Responsible for conformation and stability of many 'oncogenic' client proteins e.g. RAF, ErbB2, AKT
- Mutant oncoproteins particularly reliant on HSP90 e.g. B-RAF, EGFR, KIT
- Many of these proteins are key for driving cancer phenotype
- Inhibition of Hsp90 leads to ubiquitination and degradation of client proteins
- Potential one step combinatorial treatment for cancer

Intermediate chaperone complex

Co-chaperones and partner proteins

ATP

Inhibitor

Mature chaperone complex

Protein ubiquitination and degradation

Mature protein

the next generation biopharma leader 2009

Hsp90 Structure

Representative Hsp90 Inhibitors

Geldanamycin Analogues

Radicicol analogues

CNF2024

VER-52296 (NVP-AUY922)

SNX2112

Fragment Screening Deck

- 3 components
 - Commercially sourced
 - Selected by virtual screening and medicinal chemists (kinase focused)
 - In house fragments
- "Rule of 3" criteria
 - MW <300 Da
 - logP < 3
 - HBD ≤ 3
 - HBA ≤3
 - Rotatable bonds <3
 - PSA <60 Å²
- No reactive or toxic functionality
- Screened for solubility
- QC by LC-MS
- Consists of 2389 compounds

Fragment Deck: Biochemical Assay

HSP90 Colorimetric ATPase assay: tolerant to DMSO but lack of sensitivity and colour interference with some fragments

HSP90 Biochemical screening assays

HSP90 fluorescence polarization competition binding assay

		ATP-ase activity IC ₅₀ (µM)	FP activity IC ₅₀ (µM)	ITC K _D (μM)
VER-49009	HO CI OMe HO N CONHET	1.0	0.11	nd
UCB1050452	NH NH ₂ NH ₂	50% @ 10 mM	952	50
UCB1271054	MeO ₂ C N	37% @ 10 mM	160	49

Fluorescence polarization competition assay is able to generate IC_{50} s for fragments (~1mM limit)

STD NMR

- Wanted to compare biochemical screening with biophysical methods
- Chose Saturation Transfer Difference NMR

Relatively low throughput method requires pre-screening of fragment library

Fragment screening by STD NMR spectroscopy

- Analysis of data is subjective (the magnitude of the STD effect as reflected in the S/N of the response) and time consuming
- Total hits 46 (30% hit rate)
- Includes 6 fragments identified from biochemical assay
- Obtained ligand/protein crystal structures for 5 hits

		Binding Site	FP Assay IC ₅₀ (uM)	Ligand Efficiency
UCB1050452	NH ₂	А	952	0.26
UCB1176735	$MeO \overset{N}{\longrightarrow} NH_2$	А	24% @ 5mM	-
UCB1326516	$N \longrightarrow NH_2$	Α	nd	-
UCB1271054	MeO ₂ C N	В	160	0.33
UCB1326498	H ₂ N N N	В	nd	-

Two binding sites identified

Green: Protein conformation for site A binders; Gold: Protein conformation for site B binders

Lessons learned from in-house screening

~150 compounds were made from these starting points but no improvement in binding affinity

- Focused on the 5 binders for which structures were available
- Not enough diversity in starting point structures
- Biochemical assay too insensitive
- Structural information important

Looked for an alternative source of finding fragment starting points

Target Immobilised NMR Screening (TINS)

- Zobio BV
- Based at The University of Leiden, The Netherlands
- Offer comprehensive fragment screening service using TINS technology
- Uses a library of ~1400 diverse, commercially available compounds (co-developed with Pyxis Discovery, Delft, The Netherlands)
 - Every compound is aqueously soluble @ 500 μM
 - Every compound has QC 1H NMR spectra recorded by ZoBio
 - · Conforms to commonly accepted fragment criteria

Target Immobilised NMR Screening (TINS)

- Protein immobilised on resin and packed into flow cell in NMR spectrometer
- Library of fragments (in pools of 4-8 compounds) flows over protein and reference protein (PH domain of Akt)
- Spectra acquired and processed to identify binders (reduction of signal)
- Reference protein avoids false positives

The TINS Screening Station

Hsp90 TINS Pilot Screen

ID#	TINS	WaterLOGSY	FP Activity IC ₅₀ (µM)	Solubility @ pH 7.4	Structure
UCB1050452	Yes	ND	952	>5 mM	H N N N NH ₂
UCB1271054	Yes	ND	160	>5 mM	MeO ₂ C N
UCB1388097*	Yes	ND	322	>1 mg/mL	HO OMe
UCB1400374*	Weak	Weak	ND	>1 mg/mL	HO NH
UCB1388094*	Yes	Yes	1714	>1 mg/mL	HO OMe OMe
UCB1349014	No	No	STD NMR Hit	>5 mM	NH ₂

^{*} Aboul-ela et al, AACR-NCI-EORTC Molecular Targets and Cancer Therapeutics, November 17-21, 2003, Boston, USA, Abstract A8

TINS screening of positive controls

Binding

Non-binding

Results

- Confirmation that TINS identifies both Hsp90 binding sites
- 1393 compounds screened
- 3-4 weeks to complete (screening & data analysis)
- 91 hits (>35% difference in signal intensity)
- 6.5% hit rate

	TINS Hsp90	STD NMR Hsp90	Biochemical Fragment Screen Hsp90	Biochemical HTS Corporate Library Hsp90	TINS Kinase	TINS PPI-1	TINS PPI-2
Hits	91	46	37	1	54	106	74
Compounds screened	1393	150	2389	~77000	1439	1414	1459
Hit Rate	6.5%	31%	1.5%	0.000013%	3.8%	7.4%	5.1%

Hsp90 TINS Workflow

Crystallography

- 53 TINS hits screened in crystallography soaking experiments
- 17 ligand/protein crystal structures obtained (< 2Å)
 </p>
- Crystallisation success rate 35%
- 6 Site A binders and 11 Site B binders

	Attempts	Hit Rate	Site A	Site B
ZB hits	53	32%	6	11
UCB hits	40	12 %	3	2

- Orthogonal screening method to prioritise TINS hits for focused crystallography?
 - HSQC NMR
 - SPR
 - ITC

Crystallography Hits

Cmpd		Crystal Structure Binding Site	HSQC Kd mM (s.d)	Bioassay IC ₅₀ (μΜ)	Mol wt	Ligand efficiency
1	CONH ₂ OMe	В	2.75 (1.56)	i/a	180	0.376
2	N N NH_2 CO_2Et	В	2.65 (0.57)	i/a	209	0.327
3	HO N-Ph	В	11.7 (1.97)	i/a	174	0.415
4	NHMe N-Me	В	nd	i/a	165	-
5	N S OH	В	8.89 (4.15)	i/a	182	0.349
6	NH ₂ N	А	7.11 (4.46)	i/a	176	0.332

Crystallography Hits

Cmpd		Crystal Structure Binding Site	HSQC Kd mM (s.d)	Bioassay IC ₅₀ (μM)	Mol wt	Ligand efficiency*
7	OH OH	В	nd	i/a	194	-
8	Ph N NH ₂	Α	0.6 (0.085)	i/a	159	0.483
9	N.N. OH	Α	0.164 (0.032)	i/a	178	0.433
10	Me N N N Et	Α	0.116 (0.034)	715	137	0.540
11	Me N N H ₂ N N SEt	А	0.058 (0.014)	117	170	0.529
12	NH_2 $N N$ N	В	nd	i/a	197	-

Strategies for developing fragment hits

Cmpd		FP activity IC ₅₀ (μΜ)	Mol Wt	Ligand Efficiency
8	N N H NH ₂	24% @ 5mM	159	
UCB1423685	N CN	435	169	0.355
UCB1425591	N OH CN	436	185	0.329
UCB1423351	N NH ₂	235	251	0.262
UCB1423352	N NH ₂	22% @ 5mM	251	

 IC_{50} 235 μM

LE 0.262

Cmpd		FP activity IC ₅₀ (μΜ)	Mol Wt	Ligand Efficiency
UCB1423761	N-O N-N H	1165	226	0.237
UCB1424124	F N CONHET	3485	298	0.153
UCB1425584	N-O N N N N N N N N H	740	241	0.239

Rational design: growing from Site A to Site B and beyond?

Fragment development: Analoguing

FP IC₅₀ 117 uM Eff 0.540

FP IC₅₀ 750 uM LE 0.522

FP IC_{50} inactive

Fragment development: Analoguing

Cmpd		FP IC ₅₀ (μΜ)	Mol Wt	Ligand Efficiency
UCB1415551	H ₂ N N	750	137	0.522
UCB1168620	CI N	8.0	251	0.465
UCB1425888	CI N N N N Me	154	249	0.372
UCB1428877	CI N S MeO OMe	10.5	310	0.362
UCB1430535	CI NH NNN S N	15.4	241	0.466
UCB1430219	CI N N N N	5.6	252	0.470
UCB1428616	CI N N N N	1790	301	0.280
UCB1429640	CI N N N N	9.0	302	0.391

Fragment development: Analoguing

Summary

- A number of methods for finding Hsp90 fragment binders have been explored
- TINS methodology has been validated
- Structural information drives understanding of binding modes
 - Crystallography is not always successful-ideally need orthogonal methods
 - Don't overlook analoguing!
- Potential medicinal chemistry starting points identified
- This target is no longer being pursued because of strategic changes

Acknowledgements

Uye Udofoyo

Kelly le Riche

Rich Taylor

Jean Delgado

Colin Stubberfield

Alison Maloney

Mark Calmiano

James Reuberson

Tom Ceska

Ian Whitcombe

Dave McMillan

Gregg Siegal

Rob Heetebrij

