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Episulfonium-ion mediated ring closure

PhS

PhS
W X TSOH Ij . PhS)(O
X=CO5R 0orTs X
‘ 2 hours: 10% 5%
60 hours: <2% >98% (quantitative)

, N/

PhS/)
X - DN
®




POC4S0OC POC4SOC

Episulfonium-ion mediated ring closure
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Integrated rate expressions

kl
A —> B
lx /<3
C

d([j—/?] =- k' [A] - K? [A] [A] = [A]ge !
ﬂ — 1 13 _ K1[Alo ( ~(k1+k2)t_ —k3t>
™ =k [A] - k™ [B] [B] = Ka-K1ko e e

d[C Kk
[ ] — k2 [A] + k3 [B] [C] — [A]O 1 - e-(k1+k2)t ) 1 <e_(k1+k2)t ) e-k3t>
a kkikz




POC4SOC POC4SOC

Using MS Excel to solve for the rate constants

Time |data A dataB dataC |calc A calc B calc C |error A error B errorC

k1
k2
k3
RMS error

1) Tabulate experimental data

2) Calculate expected values of the time points, for estimated k!, k? and k3, using the
formulas previously worked out.

3) Calculate error (data - calc) for each point and square it.

4) Calculate average (error2) and square root it. This is the RMS error.

5) Use the SOLVER function in Excel to minimise the RMS error by adjusting k!, k? and k3.
XLfilel
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Is it possible to do this without the integration?

YES! Euler's method for solving differential equations numerically.

1) We know the simple rate expressions.

2) Take a guess at the rate constant k

d[A]
3) We know [A] and we know at
4) Start at "t} Al" and move a small time step &t in direction of gradient
d[A]
5) OA = ot
dt
6) Calculate t*+5t = t* and calculate A*+8A = A%, )/X
7) Repeat again and again until t = end of reaction [A] (LA) (t+6t,A+5A)
8) Compare the calculated values of A with the experimental

values of A. Calculate RMS error.
9) Repeat with a new values of rate constant k until error is

minimised.
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Is it possible to do this without the integration?

Actually the 4th Order Runge Kutta method is better. And there is plug-in for Excel:

http://www.chem.mtu.edu/~tbco/cm416/RK4_v3_0.html or Google "excel rk4 plug in"

1) Download and install plug-in
2) Get your rate constants and starting concentrations into a .rk4 file (see guide): sarah.rk4
3) Get your data into .dat file: Sarah8.dat

4) Open Excel and press the RK4 button. Blank.xls

XLfile2
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Using RK4 numerical method
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Catalysis kinetics

POC4SOC
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Catalytic cycles
Zr catalyst
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Catalysis kinetics

For a non-catalytic reaction: the reaction rate expression describes the difference in atomic
make up between the starting materials and rate determining step

For a catalytic reaction: the reaction rate expression describes the difference in atomic
make up between the catalyst resting state and rate determining step

: R.D.S. dlorod
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Changes in Rate-determining step
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Noyori, Wills and others
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Reaction mechanism and kinetics
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Reaction mechanism and kinetics

H - - 0~ "H
Ph—&/NR\H / 5 Ph y l\\lR
Ph co, Ph
RuH, all

d[PJ/dt = ka([K]o-[PDIRuH]

d[RuH,]/dt = ky([Ru]o-[RuH2]) - k1 ([K]o-[P)[RUH;]

Coupled differential equations: d[P]/dt and d[RuH,]/dt as functions of [P], [RuH,] and constants.
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Solving coupled differential equations using MATLAB
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Data from GC and NMR for various catalysts
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Data from GC and NMR for various catalysts
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Changes in RDS due to starting concentrations
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Using modelling to help with TS structure

Kinetics can tell you the atoms in the transition state of the RDS. What about the structure?

Quantum chemical calculations can really help in modelling the structure of the transition state.

e.g.

Ck3

CF3
Adv. Synth. Catal. 2007, 349, 2537 — 2548
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What is in the T.S.?

OH
@) cinchona-thiourea cat. =
)j\ + CH3NO, > o~ NO2
Ph” "H
1st order in 1st order in 1st order in
aldehyde nitromethane

catalyst

Adv. Synth. Catal. 2007, 349, 2537 — 2548

POC4S0OC
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Competing pathways

Lower energy
pathway

Higher energy
pathway

Adv. Synth. Catal. 2007, 349, 2537 — 2548
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Modelling the reaction path

Lower energy
pathway

Starting complex Reaction Product complex
G.S. T.S. G.S.



POC4S0OC

Modelling relative rates

O O Experimentally
I LDA, THF I .
Ph= P~ L Fastest
Ph Ph
i 0
LDA, THF
Ph Ph
s 3 '
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pg;/P\/H » Pg;/P\/ L1 Slowest

Can we use modelling (DFT) to help understand why?

POC4SOC
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Getting started in DFT

Commerical software such as Gaussian and Jaguar are widely used (but expensive).
GAMESS and PCGAMESS / Firefly are free!
PCGAMESS is available for windows, mac and linux, and it fast.

Instructions are included and it is simple to set up and use.

Helpful points:
Start on simple systems.

Build up complex systems from the reaction site outwards (particularly for T.S. calcs).
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Modelling relative rates
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For each X (O, S, BHy)
set combimed SM
energy to zero

Conclusion: binding to Li dominates

POC4SOC
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Modelling relative rates
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Pictures from MacMolPIt (also free)
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Modelling relative rates
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