

Core-Shell Particles

Brian Vincent

School of Chemistry, University of Bristol Bristol, BS8 1TS, UK

McBain Award Meeting, SCI, London

December 11th 2009

This talk is dedicated to my former "2-i-c" (1995-2000) and good mate:

Dr Peter Dowding

Many congratulations on

Being Awarded the McBain Medal

and

Burnley's promotion to the Premiership!!

Pete in "serious" mode ?

PROFESSOR BRIAN VINCENT'S RESEARCH LABORATORIES OPENED ON 21st NOVEMBER 2002 BY **DR. PETER DOWDING** 8 DR. ALEXANDER ROUTH

Pete in "relaxed" mode ?

BV Group shark-fishing trip, Cornwall, Summer 2000

Pete's "Shark"

And so to the science

Pete worked on 3 projects with me between 1995 & 2000:

1)Oil-water microemulsions (EPSRC + the Hull Group).

2) Porous polymer beads for drug delivery (EU + Jim Goodwin + Pharmacia & several other industrial partners).

3)Oil Core – Polymer Shell Particles (Zeneca)

CORE – SHELL PARTICLES (An overview of some of the BV Group work in this area)

Firstly, many thanks to my co-workers and our sponsors:

Dr Andrew Loxley Dr Mike Goller ***Dr Peter Dowding*** Dr Philippe Bouillot Dr Rob Atkin Dr Mike O'Sullivan EPSRC EPSRC Zeneca Zeneca P&G + EPSRC Schlumberger

An early example of what we were aiming for:

(Broken) Liquid Core / Solid Shell Particle *

* Hexadecane core / PMMA shell:

Loxley & Vincent, J. Colloid Interface Sci, 1998 208 49-62

CORE / SHELL PARTICLES

give:

- (1) protection and/or
- (2) *controlled release* of some active ingredient (A.I.), e.g.
- agrochemical (pesticides, herbicides, fungicides, fertilizers, plant growth promoters, insect pheromones).
- pharmaceutical (targeted drugs)
- food additives (e.g. flavourings)
- laundry products (perfumes, sequesterants, bleaches, enzymes, buffers)
- dyes and pigments
- flocculating / gelling agents

CORE / SHELL PARTICLES

Permeability [P] of the shell depends on:

- (1) porosity of the shell
- (2) solubility of X in the shell
- (3) diffusion coefficient of X in the shell

STANDARD RELEASE PROFILES

A = *zeroth* order : *constant* release rate (X is solid or in saturated solution)

B = first order:
$$\frac{dc_x^{\circ}}{dt} = \frac{4\pi R^{\circ} R^{i} P(c_x^{\circ} - c_x^{i})}{\delta}$$

TRIGGERED RELEASE PROFILE

note : now *consumption* of X is occurring, as well as release. *triggers*:

- dissolution of the shell (e.g. polylactides)
- swelling of the shell (e.g. ΔT , ΔpH , ΔI)
- osmotic swelling of core (e.g. ΔI)
- mechanical (e.g. applied pressure, vigorous agitation)
- light

OIL CORE / POLYMER SHELL

PARTICLES

Loxley & Vincent, J. Colloid Interface Sci, 1998 208 49-62

Process

Polystyrene Capsules

Dowding, Atkin, Vincent & Bouillot, Langmuir, 2004 20 11374 & 2005 21 5278

Effect of variation the thickness (polymer mass) of the

shell

the release profile of 4-nitroanisole: for PVPK (■) 3.8 g, (▲) 5 g, (♦) 8 g; for PMMA (□) 2.5 g, (◊) 3.0 g, (○) 3.8 g.

Release Profile: Effect of Post Cross-Linking the Shell

release profile of 4-nitroanisole: (0) un-cross-linked polystyrene, (x) cross-linked polystyrene (10 wt % DVB)

Effect of heating the shell polymer above its Tg value

release profiles (at room temp) of 4-nitroanisole from microcapsules with various polymer shells: PVPK (Tg = 58°C) (\diamond , \diamond); PIBMA (Tg = 55°C) (\circ , •); PEMA-co-MA (Tg = 48°C) (\triangle , \blacktriangle). Closed symbols: system not heated; open symbols: system heated to 10°C above the Tg

WATER CORE / POLYMER SHELL

PARTICLES

Atkin, Davies, Hardy & Vincent, Macromolecules, 2004 37 7979

Phase Separation

OM

$\mathsf{SEM}\downarrow$

final form

applied pressure

Poly(methylmethcrylate) Capsules

OIL CORE / SILICA SHELL PARTICLES

PDMS ("silicone oil") cores + silica-like shells

O'Sullivan, Zhang & Vincent, Langmuir, 2009 25 7962

Silicone Oil Droplet Synthesis

c.f. the Stöber synthesis of hard silica particles

Obey and Vincent J. Colloid and Interface Science, 1994 163 454

optical micrographs of silicone oil droplets

monodisperse and *charge-stabilised* (no surfactant added)

• average diameter 1.5 μm

average diameter 2.5 µm

Formation of Silica Shells around Silicone Oil Droplets

Add TEOS + DEODMS to aqueous phase (+ base)

DEODMS conc. = 0.023 mol dm⁻³

TEOS conc. = 0.018 mol dm⁻³

Shell thickness as a function of reaction quench time

DEODMS conc. = 0.023 mol dm⁻³; TEOS conc. = 0.018 mol dm⁻³

Mechanical Strength Studies

- Micromanipulator
- Need particles large enough to be viewed under an optical microscope

Mechanical Strength of Microcapsules Made of Different Wall Materials, Sun and Zhang, *International Journal of Pharmaceutics*, **242**, 307-311, 2002

The Equipment

Breaking Force/Displacement

Breaking force as a function of shell thickness

NB TEOS conc. fixed, and increasing amounts of DEODMS used to vary the thickness

CONCLUSIONS

- core/shell particles for the protection and / or controlled release of active materials may be prepared by a variety of methods.
- the cores may be oil or water (or solid).
- the shells may be inorganic or polymeric.
- the release rate profile may be varied by careful control of the nature of the shell and the form / concentration of the active ingredient.

And finally...!!

A personal tribute to a worthy and well-deserving winner of the McBain Medal

From an old mate

(and a long-standing cricket and rugby supporter to a truly dedicated soccer supporter ... !!)

Here's to Pete's Pride and Joy!

The "Clarets" and Turf Moor

