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This talk is dedicated to my former “2-i-c” (1995-2000) 
and good mate:

Dr Peter Dowding

Many congratulations on

Being Awarded the McBain Medal

and

Burnley’s promotion to the Premiership!!



Pete in “serious” mode ?









Pete in “relaxed” mode ?



BV Group shark-fishing trip, Cornwall, Summer 2000



Pete’s “Shark”



And so to the science ….

Pete worked on 3 projects with me between 1995 & 2000:

1)Oil-water microemulsions (EPSRC + the Hull Group).

2) Porous polymer beads for drug delivery (EU + Jim 
Goodwin + Pharmacia & several other industrial partners).

3)Oil Core – Polymer Shell Particles (Zeneca)



CORE – SHELL PARTICLES
(An overview of some of the BV Group work in this area)

Dr Andrew Loxley EPSRC
Dr Mike Goller EPSRC
***Dr Peter Dowding*** Zeneca
Dr Philippe Bouillot Zeneca
Dr Rob Atkin P&G + EPSRC  
Dr Mike O’Sullivan Schlumberger

Firstly, many thanks to my co-workers and our sponsors:



(Broken)  Liquid Core / Solid Shell Particle *

* Hexadecane core / PMMA shell:

Loxley & Vincent, J. Colloid Interface Sci, 1998 208 49-62

An early example of what we were aiming for:



CORE / SHELL PARTICLES
give:
(1)  protection and/or 
(2)  controlled release of some active ingredient 

(A.I.), e.g.

• agrochemical (pesticides, herbicides, fungicides, 
fertilizers, plant growth promoters, insect 
pheromones).

• pharmaceutical (targeted drugs)
• food additives (e.g. flavourings)
• laundry products (perfumes, sequesterants, 

bleaches, enzymes, buffers)
• dyes and pigments 
• flocculating / gelling agents



CORE / SHELL PARTICLES
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Permeability [P] of the shell depends on:

(1) porosity of the shell

(2) solubility of X in the shell

(3) diffusion coefficient of X in the shell

δ = Ro - Ri



STANDARD RELEASE PROFILES

A = zeroth order : constant release rate (X is solid or in  saturated solution)

B = first order:
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TRIGGERED RELEASE PROFILE
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note : now consumption of X is occurring, as well as release.
triggers:
• dissolution of the shell (e.g. polylactides)

• swelling of the shell ( e.g. ΔT, ΔpH, ΔI)

• osmotic swelling of core (e.g. ΔI)

• mechanical (e.g. applied pressure, vigorous agitation)

• light



OIL CORE / 

POLYMER 

SHELL

PARTICLES
Loxley & Vincent, J. Colloid Interface Sci, 1998 208 49-62



Process

EVAPORATION OF THE
GOOD SOLVENT

EMULSIFICATION

the core

the shell

water
+
surfactant :

polymer
+
non volatile non 
solvent : hexadecane
+
good solvent : 
dichloromethane



Polystyrene Capsules
a b

c d

Dowding, Atkin, Vincent & Bouillot, Langmuir,  2004 20 11374   & 2005 21 5278



Effect of variation the thickness (polymer mass) of the 

shell
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the release profile of 4-nitroanisole: for PVPK (■) 3.8 g, (▲) 5 g,  (♦) 8 g; 
for PMMA (□) 2.5 g, (◊) 3.0 g, (○) 3.8 g.



Release Profile: Effect of Post Cross-Linking the 
Shell
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release profile of 4-nitroanisole: (○) un-cross-linked 
polystyrene, (x) cross-linked polystyrene (10 wt % DVB)



Effect of heating the shell polymer above its Tg 
value
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release profiles (at room temp) of 4-nitroanisole from 
microcapsules with various polymer shells: PVPK (Tg = 58°C) (◊,♦); 

PIBMA (Tg = 55°C) (○, ●); PEMA-co-MA (Tg = 48°C) (∆,▲). Closed 
symbols: system not heated; open symbols: system heated to 10°C 

above the Tg 



WATER CORE 

/ POLYMER 

SHELL

PARTICLES
Atkin, Davies, Hardy & Vincent, Macromolecules, 2004 37 7979



Mineral Oil + Span 80
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Schematic representation of the preparation of core/shell particles with aqueous cores.



Phase Separation

OM SEM ↓
applied pressure

↕
final form



Poly(methylmethcrylate) Capsules

a

10 μm

b

10 μm

d

10 μm

c



OIL CORE / 

SILICA SHELL

PARTICLES



PDMS (“silicone oil”) cores + silica-like shells

O’Sullivan, Zhang &Vincent, Langmuir, 2009 25 7962



Silicone Oil Droplet Synthesis
c.f. the Stöber synthesis of hard silica particles
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Obey and Vincent J. Colloid and Interface Science, 1994 163 454



optical micrographs of silicone oil droplets

monodisperse and

charge-stabilised 

(no surfactant added)

average diameter  1.5 μm

average diameter  2.5 μm



Formation of Silica Shells around Silicone Oil 
Droplets

Add TEOS + DEODMS to aqueous phase  (+ base)



DEODMS conc. = 0.023 mol dm-3

TEOS conc. = 0.018 mol dm-3 



Shell thickness as a function of reaction quench time

DEODMS conc. = 0.023 mol dm-3; TEOS conc. = 0.018 mol dm-3



Mechanical Strength Studies

• Micromanipulator
• Need particles large enough 

to be viewed under an optical 
microscope

Mechanical Strength of Microcapsules 
Made of Different Wall Materials, 
Sun and Zhang, International Journal 
of Pharmaceutics, 242, 307-311, 2002

Force
transducer



The Equipment



Breaking Force/Displacement
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Breaking force as a function of shell thickness

NB TEOS conc. fixed, and increasing amounts of DEODMS used to vary the thickness



CONCLUSIONS

● core/shell particles for the protection and / or  
controlled release of active materials may be 
prepared by a variety of methods.

● the cores may be oil or water (or solid).

● the shells may be inorganic or polymeric.

● the release rate profile may be varied by careful 
control of the nature of the shell and the form / 
concentration of the active ingredient.



And finally…!!

A  personal tribute to a worthy and well-deserving winner of 
the McBain Medal

From an old mate 

(and a long-standing cricket and rugby supporter to a truly 
dedicated soccer supporter … !!)



Here’s to Pete’s Pride and Joy!

The “Clarets” and 
Turf Moor


