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Some iIssues Iin adsorption Kinetics
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Adsorption kinetics in micellar solutions
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Liquid jet

* R, =250 — 750 um
*U,=1-3ms*

 Re =1200 - 2000

e Length=5-10cm
e1-10 mM

» Surface age = 1-100 ms




Nonionic Surfactants in the Liquid Jet
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Use ellipsometry to measure surfactant adsorption to surface of jet

C,Eg = CH4(CH,),.1(OCH,CH,);OH 1 mM
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Surface Excess of Nonionics in Jet
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Can micelles break down fast enough?
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Conventional mechanism for micelle breakdown
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* Redistribution of surfactant between aggregates occurs by step-wise
addition and loss of monomers

« Set of parallel differential equations governing the aggregate distribution
known as the Becker-Doring equations (1935)



Aniansson and Wall solution

1) Becker-Doring mechanism
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2) three distinct regions in size distribution
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Aniansson and Wall solution
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FAST: Diffusion-controlled monomer
exchange. Rate o« [monomers]
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SLOW: Complete micelle breakdown. Rate determined by quantity of material in
region 2.



Breakdown kinetics of C,Eq

N = 120
T, ~ 20 us

C4Eg: cme = 0.01 mM :éﬁ%f‘{. 7
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If 7, Is so long, how can the surfactant adsorb?




Can micelles adsorb without breaking down?
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Micelle kinetics far from equilibrium
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Near a fresh surface, the monomer concentration may be much
less than the cmc. Are micelle kinetics the same near a surface
as in the bulk solution?



Back to Becker-Doring ...
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« Adsorption step occurs at a rate that is close to diffusion-controlled

» Desorption rates determined by the thermodynamic stability of
aggregates of different sizes

* Need to evaluate the chemical potential of a monomer in a micelle as a
function of the aggregation number, g

e Use a semi-empirical method known as ‘molecular thermodynamics’ to
determine the free energies of micelles



Size distributions for C,,Eq
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Size distribution gives Aniansson and Wall relaxation times 1, =2 x 10°s
1, = 100 years



Stochastic breakdown simulations

Consider a single micelle surrounded by monomers
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When ¢, = cmc the
probability of complete
breakdown is very small




Stochastic breakdown simulations
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When ¢, < cmc the
probability of complete
breakdown increases




lifetime /s

Lifetime of C_E micelles
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For large perturbations (X; << cmc), breakdown is very fast

Lifetime increases when X, > 0.5 cmc
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Transition state theory

Treat the aggregation number as a ‘reaction coordinate’.
Consider an A-mer with free energy G°(N) breaking down into a g-

mer with eneggi) = G°(g) + (N — g)
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This free energy curve gives the
(quasi) equilibrium distribution
function:

X o e—G(g)/kT
g

Provided that breakdown rate is
slow compared to t,, there will be a
quasi-equilibrium of aggregates
with sizes greater than g¥ . We can
therefore use transition state theory
to write

_ ua—AGH/KT

Kgic = VE
What happens when the monomer
concentration is less than the cmc?



Frequency factor in TST
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First guess: v=Kk,(g%)

This guess overestimates the rate, since the transition state is ‘flat’

| is the ‘width’ of the transition
state

Treat motion over transition state as diffusive, with a step time ofk, (g*)

Then vk, (g*)/I°



Micelle lifetimes

average lifetime / s
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* Micelle lifetimes are very strongly dependent on the size of the perturbation to
the monomer concentration: for C,,Eg, the dissociation rate varies by 18 orders
of magnitude!



Stopped flow measurements of micelle breakdown

The breakdown of C,,E; micelles at 293 K following 2-fold dilutions
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° Breakdown occurs on the sub-second timescale

® Rate increases with increasing bulk concentration



Merge-release mechanism
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Fusion of micelles to form a super-micelle that loses monomers by the
Becker-Doring mechanism has the net effect of destroying one micelle
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Predictions of merge-release model

Relaxation to equilibrium in C,,Eg solutions following 2-fold
dilutions
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® Micelles break down on the sub-second timescale

® Relaxation rate increases with increasing bulk concentration,
as observed in the stopped flow experiment



Conclusions

Micelles can adsorb to an interface at a diffusion-controlled rate
without first breaking down into monomers.

The break-down rate for micelles of nonionic surfactants is an
extremely strong function of the size of the perturbation

A combination of stochastic simulations and a transition-state
approach allows the calculation of breakdown rates by the
Becker-Ddring mechanism over 20 orders of magnitude in rate.

The Becker-Doring mechanism does not provide a viable route
for micelle break down at monomer concentrations near the cmc

Micelle fusion followed by Becker-Doring decay is a possible
alternative mechanism for micelle break down

These results have significant implications for kinetic processes
In micellar systems
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