Nano-ions: How do you produce charge in a non-polar world?

Roger Kemp, Rodrigo Sanchez, Seth Roberts, <u>Paul Bartlett</u>

School of Chemistry, University of Bristol, UK.

Why are ions so difficult to generate in non-polar solvents?

Bjerrum length

$$\lambda_B = rac{e^2}{4\pi\epsilon_0\epsilon_r k_B T} egin{array}{c} ext{at which:} \ ext{Coulom} \end{array}$$

Separation of unit charges at which:

Coulombic energy = k_BT

$$\lambda_B =$$
 0.7 nm $\epsilon_r \sim$ 80 $\lambda_B =$ 28 nm $\epsilon_r \sim$ 2

In non-polar solvents ions must be embedded in *larger* structures such as reverse micelles or microemulsion drops

Nano-ions

Formation by ionization or thermal disproportionation

$$\sum_{\text{Na}} \sum_{\text{Na}} c^{-} + \sum_{\text{Na}} c^{+}$$

$$K_{\text{I}} = \frac{c_{\text{ion}}^{2}}{c} \longrightarrow c_{\text{ion}} \propto c^{1/2}$$

$$2 \times \frac{K_{D} = \exp(-2\beta u_{el})}{} +$$

Electrostatic energy to charge a micelle of radius r $\beta u_{el} = \frac{\lambda_B}{2r}$

$$K_{\rm D} = \frac{c_{\rm ion}^2}{c^2} \longrightarrow c_{\rm ion} \propto c$$

I. Introduction

Conductivity of AOT in dodecane

Open questions?

How do colloids charge in non-polar environments?

How can we control the level and sign of the charge?

Single particle optical microelectophoresis (SPOM)

Single particle optical microelectrophoresis

Charging-up colloids in non-polar environments

Non-polar charging mechanisms

I. Adsorption of nano-ions / surfactants

 Positive or negative charge depending on adsorption characteristics 2. Ionization of surface groups

Sign of charge fixed by nature of surface

(a) Particles charge only in presence of reverse micelles

(b) Charge mirrors concentration of adsorbed surfactant

(c) Small-angle neutron scattering measurements

Contrast variation

$$\langle R \rangle =$$
 45.7 nm

Off-match

Core-match

Where is the surfactant?

... in the polymer shell surrounding each particle

Nano-ions: How do you produce charge in a non-polar world?

Add inverse micelles!

 Charge is generated by ionization of adsorbed surfactant

Micelles act as a reservoir for the liberated ions

Other methods to generate charge?