Future prospects for palm oil in the 21st century:

Biological and other challenges

Denis J Murphy

Biotechnology Unit, University of Glamorgan

Wales, UK

© Denis J Murphy 2009

SCI Oil palm meeting, London, March 2009

Introduction

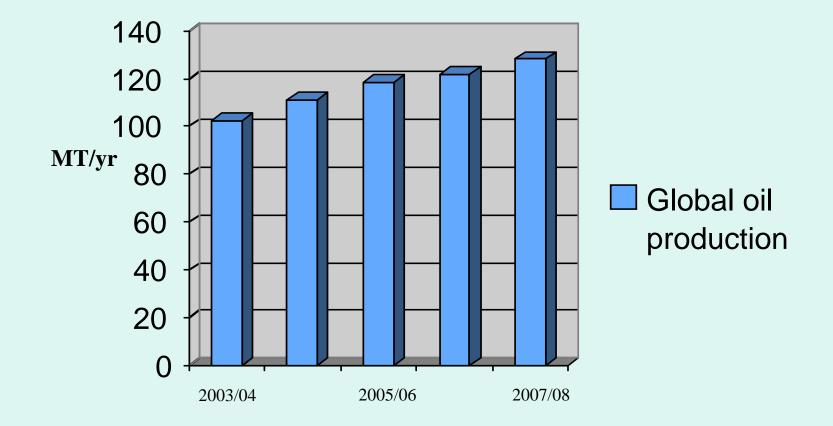
- In 2006, palm oil supplanted soybean oil as the major globally traded vegetable oil.
- Despite breeding advances, plantation yields have only shown modest improvements in established centres of cultivation, but worldwide production of palm oil has continued its steady increase.
- This is largely due to the conversion of additional land to plantations in countries as far apart as Papua New Guinea, Indonesia and Columbia.

Introduction

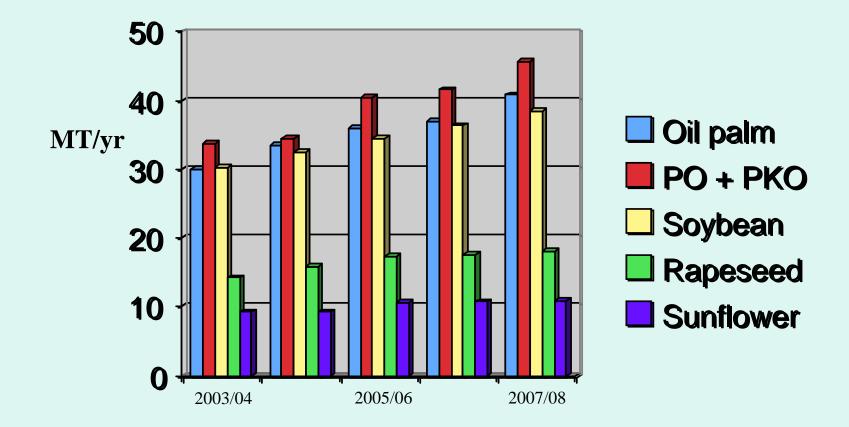
- In 2006, palm oil supplanted soybean oil as the major globally traded vegetable oil.
- Despite breeding advances, plantation yields have only shown modest improvements in established centres of cultivation, but worldwide production of palm oil has continued its steady increase.
- This is largely due to the conversion of additional land to plantations in countries as far apart as Papua New Guinea, Indonesia and Columbia.
- Thanks to its year-round harvestability and multi-decade productive lifetime, the oil palm cropping system has unique advantages over annual oil crops such as soybeans, rapeseed or sunflower.
- Oil palm has only just begun to benefit from modern high-tech breeding and selection techniques.

Global trends

- Economic downturn:
- Biofuels:
- Population growth:
- Climate change:
- Environment:
- Petrochemicals:


Global trends

- Economic downturn: R&D -ve foods +ve
- **Biofuels:** foods -ve transient distraction
- Population growth: foods ++ve
- Climate change: pests & diseases -ve unpredictable
- Environment: expansion -ve efficiency & sustainability
- Petrochemicals: no future oleochemicals ++ve


Continuing buoyant production in crop oils sector

Oil palm as the global leader

Biological challenges

- Yield enhancement:
- Manipulation of fatty acid quality for different downstream applications:
- Pest and disease control:
- Addressing sustainability agenda:
- Bio-environmental audits and action plans:

Biological challenges

- Yield enhancement: currently <4 T/ha, future max >18 T/ha?
- Manipulation of fatty acid quality for different downstream applications: currently 16:0/18:1, future 60-80% 18:1 etc
- Pest and disease control: focus on surveillance & nonchemical methods
- Addressing sustainability agenda: minimise inputs
- Bio-environmental audits and action plans: eg peatlands

Biotechnological tools

Advanced breeding technologies

- Transgenesis (genetic engineering or GM)
- Mass clonal propagation
- Hybrid creation
- DNA marker assisted selection
- Genomics

Biotechnological tools

Advanced breeding technologies

- Transgenesis (genetic engineering or GM)
- Mass clonal propagation
- Hybrid creation
- DNA marker assisted selection
- Genomics

These technologies have created unprecedented opportunities for radical steps forward in redesigning the architecture and biological performance of the oil palm plant

Segmentation

- *Per capita* consumption of vegetable oils is still increasing across the world, with increasing uses for food and biofuels
- These factors are leading to an increased **segmentation** in the marketplace for vegetable oil production and utilisation

Segmentation

- *Per capita* consumption of vegetable oils is increasing across the world, with increasing levels of affluence, and a greater awareness of the nutritional benefits of plant-based oils
- These factors are leading to an increased **segmentation** in the marketplace for vegetable oil production and utilisation
- On the one hand, there is a slowing demand for cheap, edible **commodity oils**, such as soybean or palm, from the emerging economies of Eastern Asia
- On the other hand, in developed economies, there is a slowing demand for **biodiesel**, which is mainly sourced from food-grade palm and rapeseed oils
- Is high oleic palm oil the answer?

High oleic - low PUFA

- the multi-purpose oil crops of the future

High oleic oils

- Cheap but 'healthy' commodity oils
- High monounsaturate content (olive oil, Mediterranean diet etc)
- Do not require hydrogenation (*low trans*)
- Suitable for non-food use, eg lubricants (low oxidation)

GM High-oleic oils

- Very high oleate (65-90%+), v low PUFA (<5%)</p>
- Several transgenic (GM) lines have been developed but not commercialised:
- These line are based on antisense or RNAi technologies
- Rapeseed/canola (89%)
- Indian mustard (73%)
- Soybean (90%)

© Denis J Murphy 2009

• Cottonseed (78%)

Non-GM High-oleic oils

- Very high oleate (65-90%+), v low PUFA (<5%)
- Many non-GM commercial lines already developed:
- Rapeseed/canola (75%) [LN 3%]
- Soybean (83%)
- Sunflower (80-90%)
- Safflower (75%)
- Olive (75%)
 - (Palm (55-60%)

- [LN 3%] - [LN 3%]
- [LN <1%]
- [LN <1%]
- [LN <1%]
- [LN <15%])

Some commercial High oleic oils

- NuSun[™] sunflower (65%) used by P&G for Pringles chips (200k T)
- Vistive[™] soybeans (80%) from Monsanto
- Natreon[™] canola (75%) from Dow
- Nutrium[™] sunflower (75%) sunflower from DuPont/Pioneer/Bunge

Strategies for oil modification

- Both GM and non-GM strategies are viable and can be cost-effective for many oil modifications
- Most (but not all) companies currently chose the non-GM route due to adverse market signals for GM

GM oil palm – some like it HOT (high oleic transgenic)

• HOT is currently under development in Malaysia

[Ravigadevi et al (2002) Genetic manipulation of the oil palm-Challenges and prospects, The Planter 78, 547-562]

- BUT non-GM palm oil varieties @ 55%+ oleic could also be available in the near future
- Both strategies should be pursued vigorously

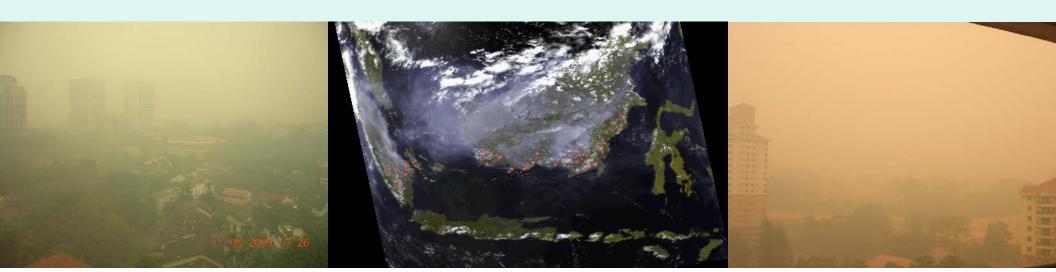
High oleic palm oil

				E. OLEHFER	
Ĩ			State State		
	_CHARAC	TERISTICS OF	CRUDE PALM	OIL	
		E. Guineensis	E. Oleifera	O. G. Hybrids	
	Fatty Acid Composition	n (wt. %)			
10 13 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14:0	1.1	0.1	0.3	
	16:0	44 0	18.0	30.0	102
	18:0	4.5	0.5	1.9	1.08
	18:1	39.2	62.8	53.9	1 16
	18:2	10.1	16.8	13.6	
	lodine Value	53.3	88.9	71.5	
	Tocopherols 7				
	Tocotrienols (ppm)	890	1300	1000	
	Carotene (ppm)	600	2036	1100	

The environment

- Bio-environmental audits and action plans
- Environmental context of oil palm cultivation encompasses numerous complex areas of science and policy making
- Encouraging plantation biodiversity in a way that is consistent with maintaining sustainable levels of production
- Management of the conversion of tropical peatlands and other sensitive habitats to plantations while minimising avoidable release of greenhouse gases or other adverse environmental impacts.

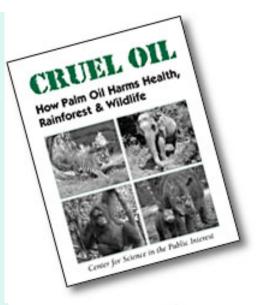
Challenges for oil palm


Developers

Environmentalists

Sluggish innovation

Biodiesel



Challenges for oil palm

Developers

- Environmentalists
- Sluggish innovation
- Biodiesel

Crop management

- Translation of biological improvements into reality on all plantations (commercial & smallholder)
- Management of plantations disseminating best practice, improving extension services, re-skilling labour force
- Implementation of best practice in propagation, husbandry, harvesting, and processing of the crop
- Underperformance in this area is shown by the relative stagnation of average plantation yields at well under 4 t/ha over the past 15 years
- This is despite the development of much higher-yielding genotypes and their effective cultivation by some of the more exemplary growers.

The yield issue

Soybean/Canola/Sunflower: 1 T/ha

Oil palm: 3 to 10 T/ha potentially < 20 T/ha

© Denis J Murphy 2009

Oil palm - an emerging giant

- 3 to 10-fold higher yield than temperate oilseeds
- Year-round cropping
- Plantations last 25+ years (no annual sowing)
- Low labour costs
- Emerging mechanisation
- Considerable unexplored genetic potential
- Room for improved management systems
- Good prognosis for future yield gains and potential for product diversification

Some challenges for oil palm

- Environmental concerns
- Sluggish innovation (e.g. yield)
- Biodiesel
- Slow pace of genetic oil modification whether via GM and non-GM methods

Some take-home messages

- We are moving into an increasingly uncertain period
- Economic dislocation and climatic changes are translating into:
- unpredictable shifts in public policy (e.g. biofuels)
- rapid shifts in global demand for (and hence prices of) commodities such as crops
- Therefore it will be crucial for the oil palm sector to maintain an efficient R&D operation in biology and other sectors so that this uniquely versatile crop can maintain, and possibly extend, its global pre-eminence in the future.

Palm oil - the healthy vegetable oil

Thank you for your attention

