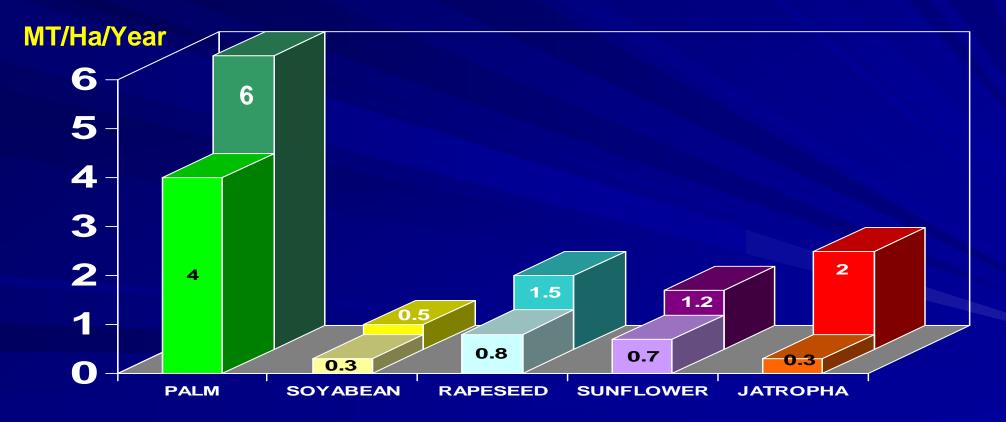
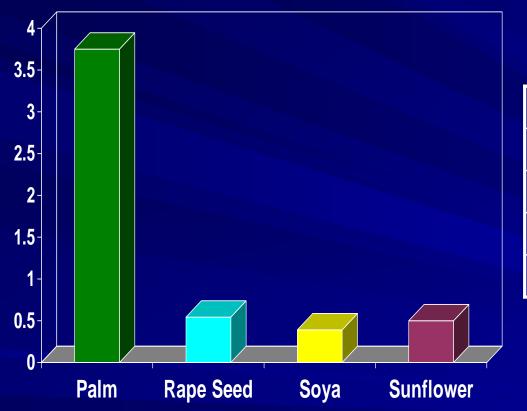
Wolfgang Rupilius (Consultant) Salmiah Ahmad (MPOB)

WHAT IS BIODIESEL ?


• FAME	FATTY ACID METHYL ESTER		
	VEGETABLE OIL METHYL ESTER		
ENVODIESEL	PALM OLEIN +PETROLEUM DIESEL		
SUN DIESEL	CIESEL FROM BIOMASS		
RENEWABLE	HYDROCARBONS FROM OILS/FATS		
DIESEL			
NExBTL	HYDROCARBONS FROM OILS/FATS		
• TESSOL	FAME ,TRIGLYCERIDES & BIOETHANOL		
ETC, ETC			

IN THIS PRESENTATION :

BIODIESEL IS ANY FUEL SUITED FOR DIESEL ENGINES BASED ON RENEWABLE RAW MATERIALS


VEGETABLE OILS/RAW	PRODUCTION IN
MATERIALS FOR BIODIESEL	MILLION MT (2007)
PALM	38
SOYA BEAN	36
RAPE SEED	16
SUN FLOWER SEED	10
JATROPHA	> 1
TOTAL	100

PRODUCTIVITY OF BIODIESEL RAW MATERIALS

GLOBAL BIODIESEL YIELDS

Kilo liters/Ha/Yr

OIL	BIODIESEL	LAN	D
PALM	3750 liters	1.0	Ha
RAPESEED	3750 liters	6.8	Ha
SOYA	3750 liters	9.4	Ha
SUNFLOWER	3750 liters	7.5	Ha

Source: Environmental Research Letters 4(2009) – "Resetting Global Expectations from Agricultural Biofuels". Based on 22,000 sets of data from 238 countries.

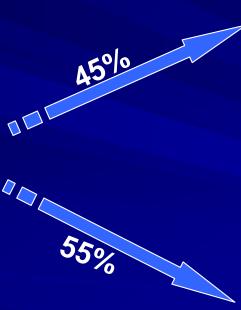
JATROPHA OIL : A SOLUTION TO THE ISSUE OF "FOOD OR FUEL" ?

".....At this stage it is still particularly important to distinguish between reality, promises and dangerous extrapolations. To avoid, spectacular and regretful failures and waste of money for investors as well as great disappointments for local populations, promoters of large scale plantation are invited to adopt stepwise approaches"

Summary from: POSITION PAPER ON JATROPHA AND LARGE SCALE DEVELOPMENT, FACT (FUEL FROM AGRICULTURE IN COMMUNAL TECHNOLOGY), WAGENINGEN, NETHERLANDS, JUNE 2007.

PROPERTIES OF FAME BIODIESEL

METHYL ESTER	CETANE NR.	CFPP Cold filter plugging point	IV lodine value
PALM	60	+13	45
SOYA	53	-3	125
RAPE	55	-12	110
JATROPHA	52	-2	100


CLOUD POINT OF PALM OIL METHYLESTER- PETRO-DIESELMIXTURES

MIXTURES	CLOUD POINT (°C)
B-100	+15
B-30	+2
B-20	0
B-10	-2
B-0	-2

Lit.: Monica Cuellar Sanchez, Posibilidades del biodiesel de palma, PALMAS Vol. 28 No. Especial, Tomo 2 2007

FRACTIONATION OF PALM OIL METHYLESTER THROUGH DISTILLATION

<mark>C 14:0</mark>	2 %
C 16:0	<mark>42</mark> %
C16:1	<mark>0,5 %</mark>
C18:0	<mark>5 %</mark>
C18:1	<mark>41 %</mark>
C18:2	10 %

C14 3% C16:0 96% (MP 28°C) C16:1 1% * Raw material for surfactants * Warm Climate Biodiesel

COMPOSITION OF DIFFERENT FAME-BIODIESEL QUALITIES

METHYL	C14	C16	C18:0	C18:1	C18:2	C18:3
ESTER						
PALM	2	43	5	41	10	-
F- PALM*	-	-	7	74	19	-
RAPE	-	4	5	55	28	8
SOYA	-	8	5	28	53	6

* Frantionated Palm

HYDROCARBONS FROM FATS AND OILS AS BIODIESEL

n-HEXADECANE = CETANE = CETANE NUMBER 100

NESTE OIL , ÖMV PETROBRAS CONNOCO- PHILLIPS

NEXBTL H-BIO RENEWABLE DIESEL

HYDROCARBONS FROM DIFFERENT FATS AND OILS

TRIGLYCERIDE	HEXADECANE (%)	OCTADECANE (%)
PALM STEARINE	50	50
PALM OIL	45	55
TALLOW	35	65
SOYA	8	92
RAPE SEED	5	95

MELTING POINT : n-HEXADECANE = 18°C, n-OCTADECANE = 28°C During the manufacturing process isomerization to lower melting branched hydrocarbon is taking place

TIPICAL PROPERTIES OF HYDROCARBONS FROM FATS AND OILS

CETANE NUMBER 🥟 FROM 84 TO 99

CLOUD POINT

COMPATIBILITY

SATURATED

- DOWN TO -30°C
- NO RISK OF GUM FORMATION
- COMPLETELY COMPATIBLE
 WITH PETROLEUM DIESEL

CARBON MONOXIDE + HYDROGEN

Fischer-Tropsch Synthesis

LIQUID HYDROCARBONS

For one tonne of biodiesel around 5 tonne of organic material are needed

BIODIESEL	INVESTMENT FOR 200,000 TONNE (MILLION EURO)	RAW MATERIAL REQUIRED FOR 200.000 MT (TONNE)
FAME	40	225,000
NExBTL	150	240,000
BTL	800	1,000,000

Lit.: OMV Refining & Marketing , alternative Treibstoffe im ÖPNV , Stuttgart 30.01.2008

<u>SUMMARY</u>

- Palm oil the lowest cost vegetable oil for biodiesel
- Palm oil needs far less agricultural land for production
- Palm oil based FAME Biodiesel not suited low temperatures
- Palm oil based FAME- Biodiesel modified through distillation suited for low temperatures
- Jatropha oil based biodiesel is probably not a solution for "FUEL OR FOOD" problem
- Palm oil/stearin based hydrocarbon biodiesel has excellent overall properties
- The BTL-Biodiesel investment cost is extremely high, a broad introduction in the near future is unlikely
- Whatever the raw material for the future generation of biodiesel will be, always the tropical countries will have a cost advantage

rupilius@aol.com salmiah@mpob.gov.my