

FOR INTERNAL USE ONLY

Evaluation of Flow Technology at AstraZeneca

1st RSC/SCI Symposium on Continuous Processing and Flow Chemistry 2010, GSK Stevenage, 3rd-4th Nov 2010

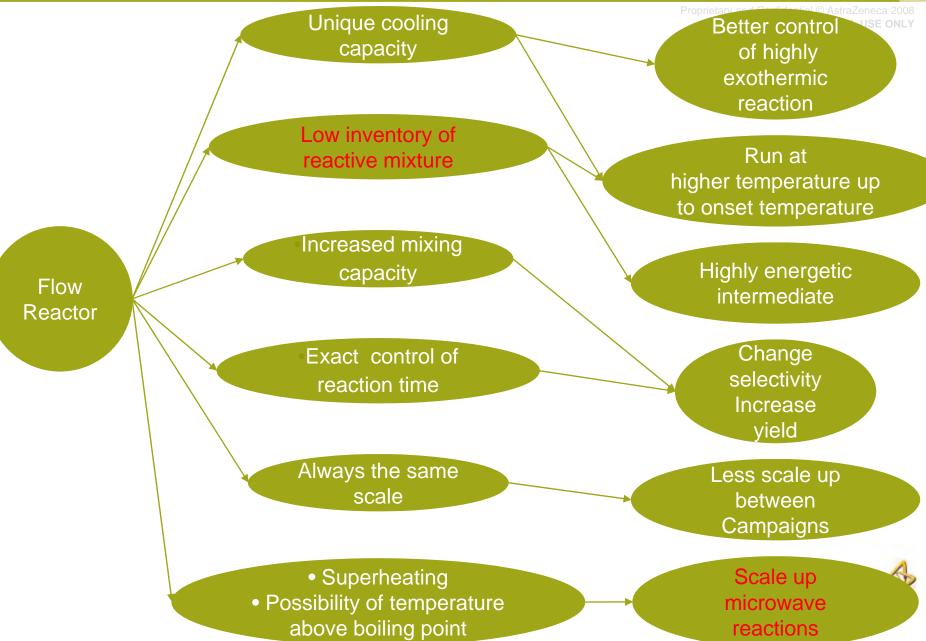
> Dr Ash Mahmood Arshed.mahmood@astrazeneca.com

Objectives

- Background
- Vision
 - Link between C1-C2 and beyond
- Flow Chemistry in AZ
 - Examples
- Summary

Background

- As Chemists, we understand concept of batch technology
 - RMs in Process steps product out
- Unchanged for ~100 years
- Excellent all-rounder; however there are limitations
 - Mass Transfer
 - Heat Transfer and dissipation
 - Limits of pressure / temperature
 - Cycle Times
 - Asset costs / maintenance



- Business drivers of cost, speed, and quality by:
 - Less development associated with scale up "leave the tap running" from LI/LO/C1 to C2
- Cheaper API production cheaper processes or routes
 - Access to hazardous chemistry
 - a lower inventory & better control within the reactor
 - Access to chemistry that cannot be scaled in batch
 - Microwave chemistry
 - Unstable intermediates/products
 - Mixing sensitive reactions \rightarrow Improved selectivity/purity
- Biggest impact of the "*leave the tap open*" principle:
 - On average a C1 campaign will cost £100,000
 - On average a C2 campaign will cost £750,000

Benefits of a Flow Reactor

- 2006 Alderley Park Chemistry Automation Team (APCAT) was a coordination hub for gathering and sharing information on chemical technologies, best practices and new ways of working
- The uptake of microwaves in discovery labs complemented flow technology
- APCAT considered flow a viable 'new technology'.
- Initially limited commercial equipment available therefore a watching brief was kept.
- Syrris Africa system was trialled but considered over complicated and high cost.
- Other AZ sites were also evaluating flow equipment (syringe pumps, chip reactors, Alfa Laval, FRX, CYTOS etc).
- Early 2008 Uniqsis FlowSyn and Vapourtec R2/R4 models became available.

The AZ Vision for CP

- Coordinated efforts
 - Interested parties from all sites / functions
 - Developed direction for Pharm Dev.
 - Global Flow Network
- 1) Focus on C1-C2 to deliver CP as a core capability
 - Key interaction with Med Chem
 - Develop once and scale
 - Minimise development from C1
- 2) Expand beyond C2 as experience / projects progress
- 3) Develop Flow capabilities
 - Work-up and Isolation (crystallisation)
 - Multi phase systems (reactions gassing / slurries / suspensions)

Leaving the Tap Open

Initial objective

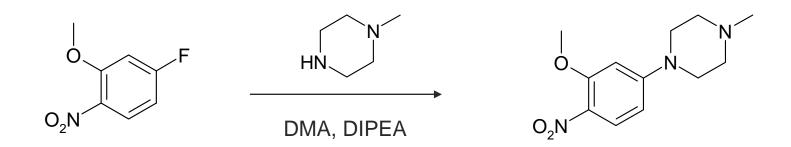
from 'Faster Development of C2 methods' C2 Paradigm project

 Save development time from RSL (<1 kg) to Med Eval. (3-5 kg), C1 to C2

 Broaden the window for scale-up of late stage Medicinal Chemistry routes

How do we Approach Flow Chemistry in AZ?

Thinking in a flow mindset

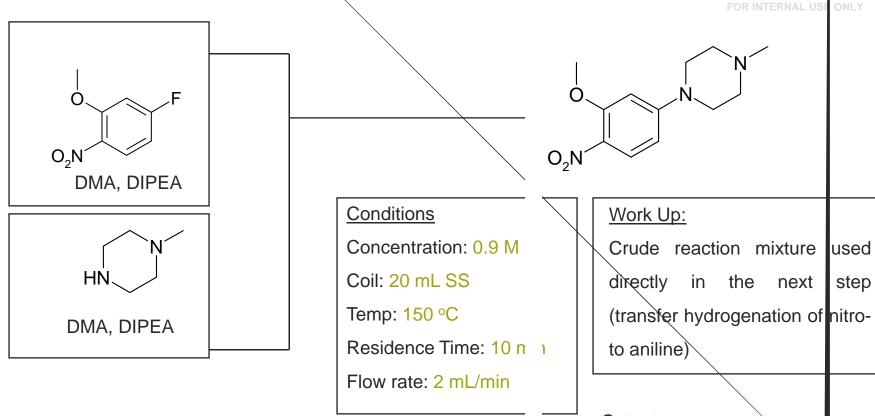


Challenges	Solution For INTERNAL USE (
Precipitations						
 Slurry reactions cannot be pumped into the reactor Small amounts of precipitations might be allowed, when formed during the reaction 	 Solubility test: Concentration Different solvent (mixture of solvent) Temperature 					
Kinetics						
 Reaction must have a satisfactory conversion within 45-60 min Stability of the resulting product after the reaction 	 Temperature (can be raised in the flow reactor) Equivalent of reagents (an excess can be used, exact control of reaction time) 					
Proof of concept						
Run in flow reactor	 Run the reaction in a microwave Use a chip AstraZeneca RESEARCH & DEVELOPMENT CANCER & INFECTION 					

Early Successes - SNAr Chemistry

Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY

Initial Conditions: 80 °C, overnight


Yield: 83%

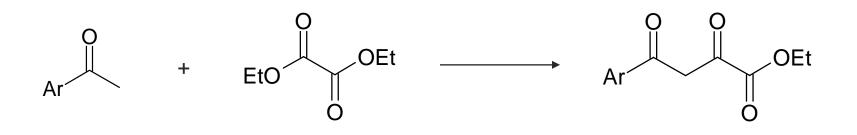
Microwave Conditions: 9 reactions investigated reaction temperature (80 – 140 °C), time (5 and 10 min) and stoichiometry (1.1 and 1.5 eq piperazine).

> 1.5 eq piperazine, 120 °C, 10 min – 85% complete by LCMS

<u>Output</u>:

Ca. 14.5 g (100%UV by LCMS)

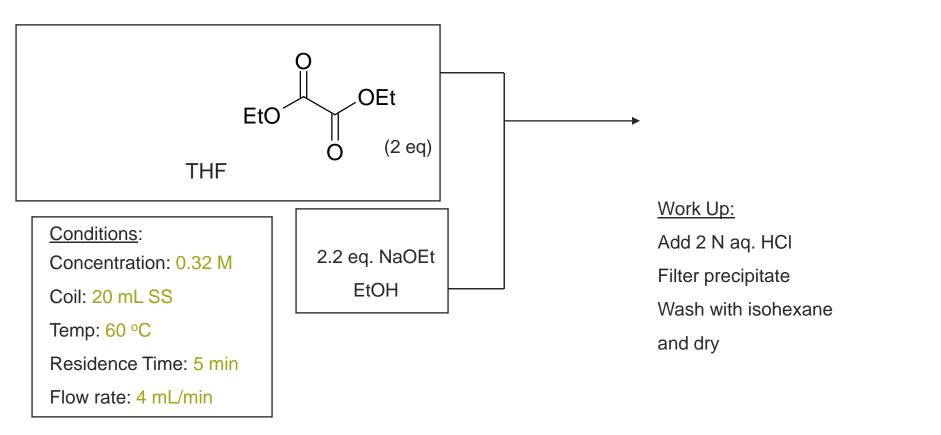
Run Time: 30 minutes


(Yield for the 2 steps = 73%

Early Successes - Claisen Condensation

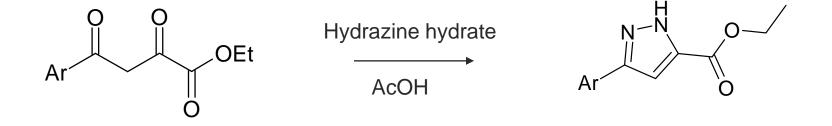
Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY

Initial Conditions: NaH, toluene


Modified Conditions: NaOEt, EtOH, THF, room temp, 45 min

Work Up: Acidify (2 N HCI), filter precipitate and dry

Yield = 96%



Initial Conditions: Hydrazine hydrate, AcOH (suspension), rt, 4 h

Modified conditions: Hydrazine.HCI, THF, EtOH, reflux, 45 min, suspension

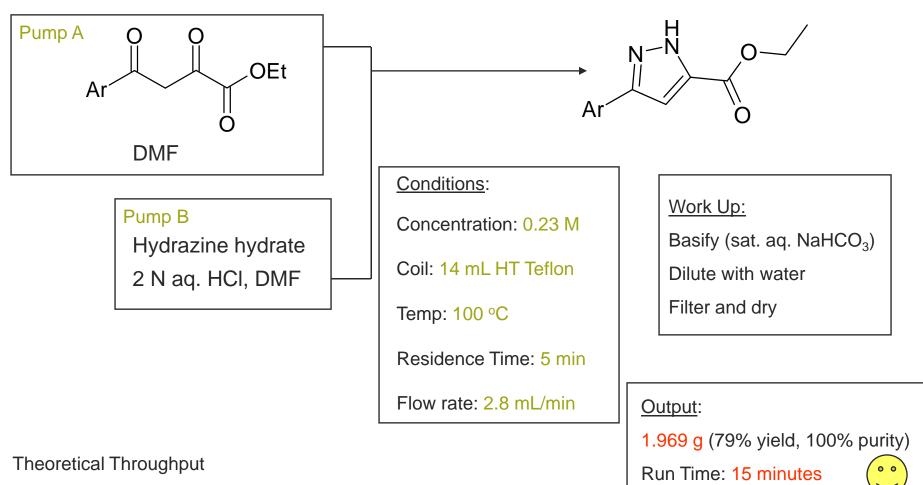
Work Up: Basify (sat. NaHCO3), dilute with water, filter and dry product

Yield = **82%**

Addition of water to the reaction mixture gave a solution without impeding the reaction

No Flow!

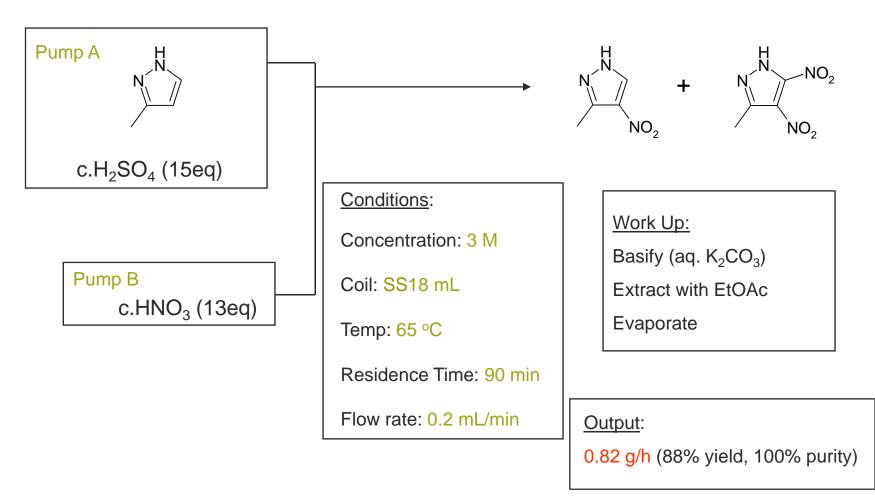
Move to hydrazine hydrate, 2 N aq. HCl, DMF....


Early Successes - Pyrazole formation

Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY

Astra7er

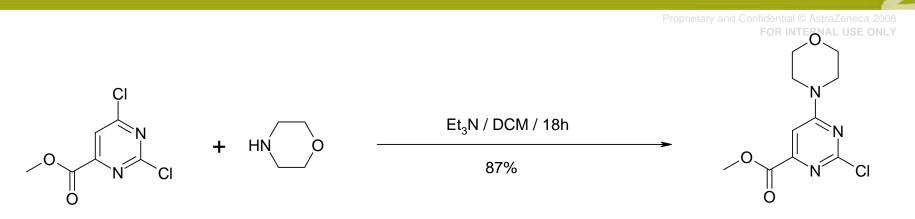
RESEARCH & DEVELOPMENT CANCER & INFECTION



/Min	0.64 mmol	0.17 g
/Hour	38.6 mmol	10.2 g
/Day	0.31 mol	81.6 g

Nitration Chemistry at AZ Reims

Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY


J.Pelleter and F.Renaud, *OPRD*, 2009, **13** (4), 698

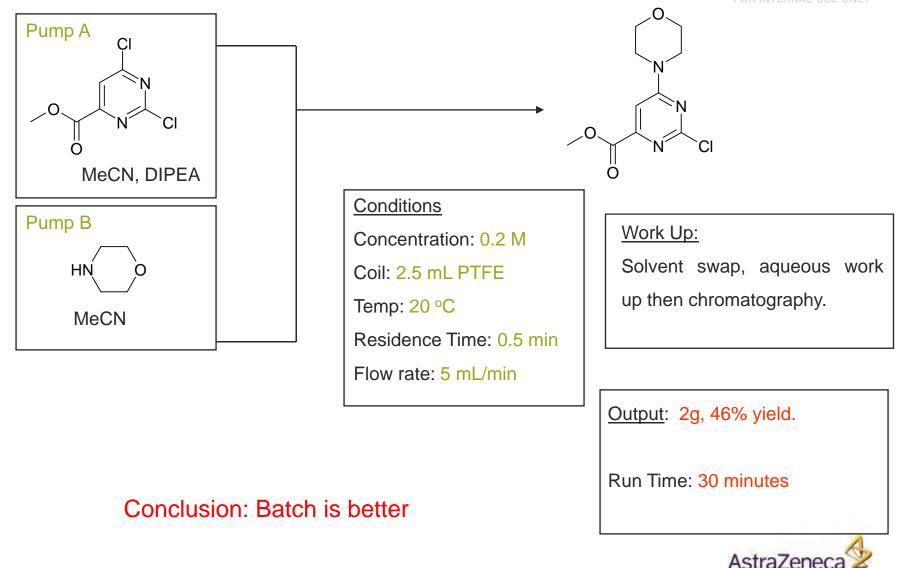
Speed is not always the essence

Initial Conditions: Morpholine (1.0eq), Triethylamine (slurry), rt,18 h

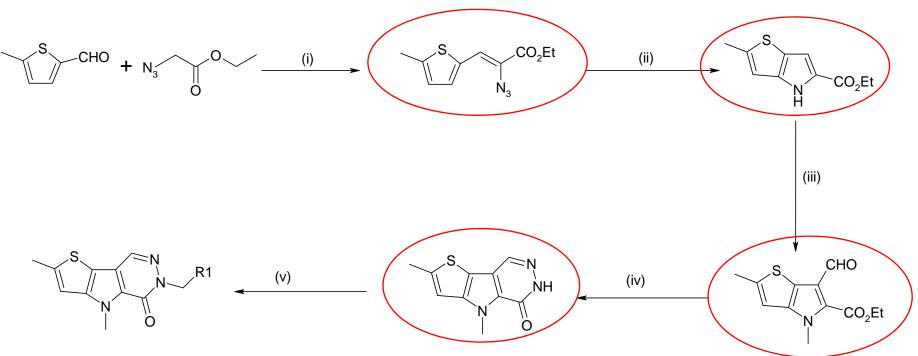
Work Up: dilute with water, dry/evaporate organic layer and triturate

Modified conditions: Morpholine (1.0 eq), DIPEA, MeCN, rt, 30 secs

Overall yield 46%, material had to be purified to remove impurity

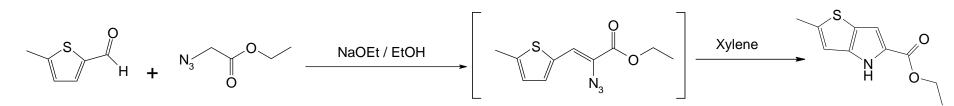


Speed is not always the essence


Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY

> RESEARCH & DEVELOPMENT CANCER & INFECTION

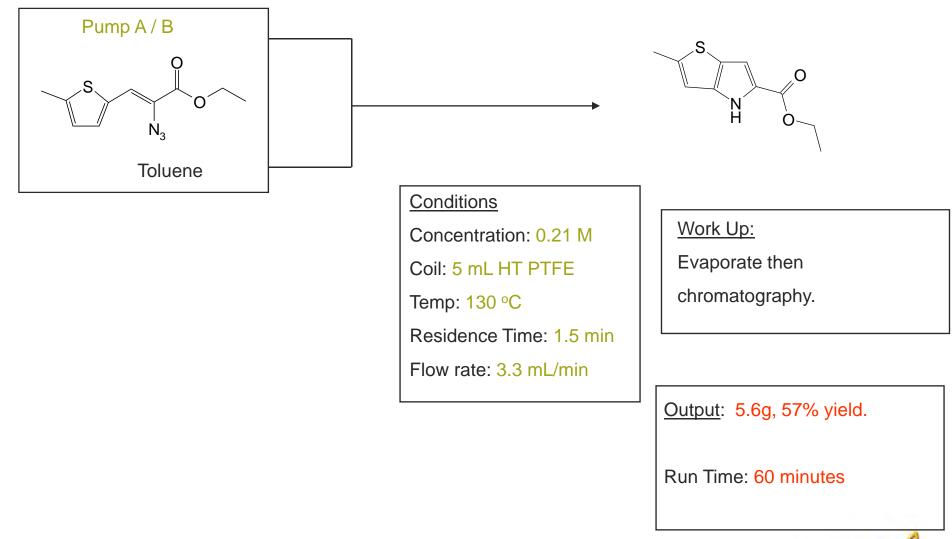
Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY



Conditions and reagents: (i) Na, EtOH, 0°C; (ii) xylene, reflux; (iii) (a) POCI₃, DMF, 60°C, (b) MeI, K₂CO₃, DMF; (iv) 2-Ethoxyethanol, hydrazine, reflux; (v) alkyl bromide, KO^tBu, DMF, r.t.

Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY

Initial conditions: NaOEt (4eq) / EtOH 0°C then xylene reflux, 30% over 2 steps


Charging less sodium ethoxide leads to incomplete reaction.

Telescoped reaction has a 'dirty profile'. AQUEOUS WORK UP NECESSARY.

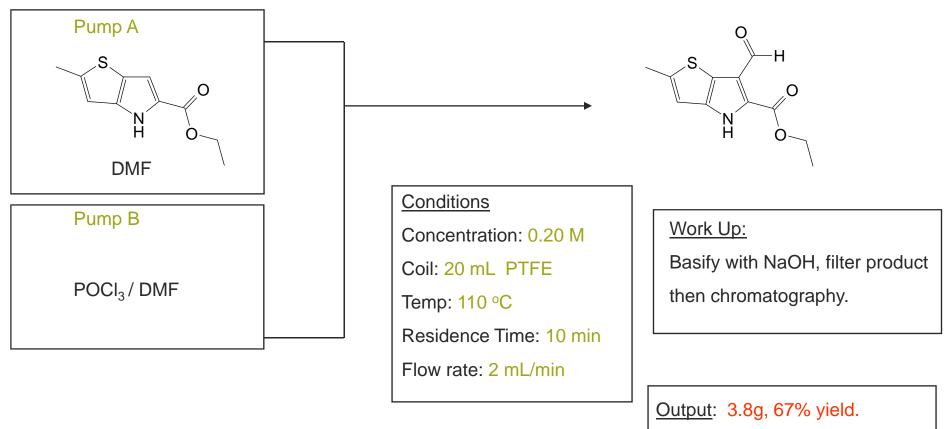
Modified conditions: NaOEt (4.0 eq), EtOH, NH₄Cl quench, Toluene extraction.

Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY

Initial conditions: POCl₃ (2eq) / DMF 60°C for 2 hours 50% yield

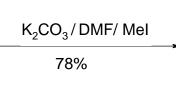
Microwave Conditions: 4 reactions investigated stoichiometry (2 to 10 eq $POCI_3$).

Modified conditions: POCl₃ (10eq) / DMF 110°C for 10 minutes


Work Up: Basify (aq NaHCO3), filter and dry product

Yield: 67%

Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY


Run Time: 60 minutes

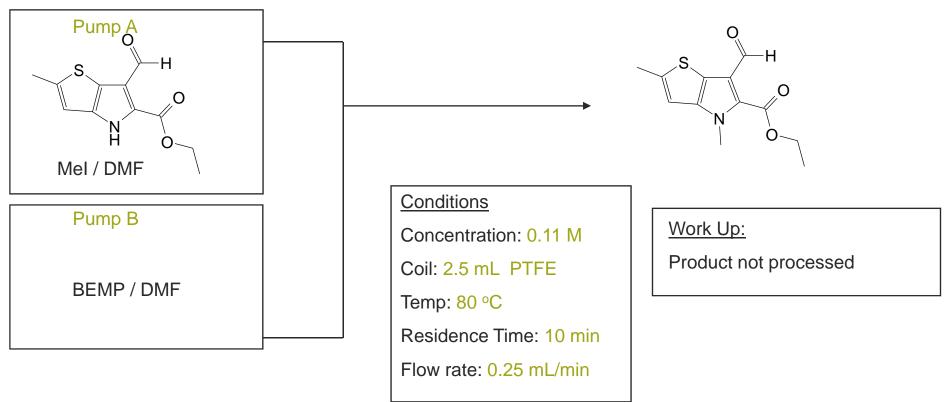
Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY

Initial conditions: MeI / K₂CO₃ 20°C for 3 hours 78% yield

Attempted in batch using organic bases

Bemp gave the best result (86% isolated yield)

CaCO₃ tried in a column reactor as base but unsuccessful


Bemp resin also works but very expensive.

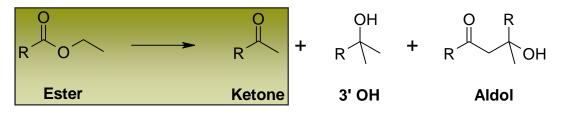
Base	SM (%)	Product (%)
DIPEA	41	59
DBU	19	65
TMG	4	90
BEMP	0	97

Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY

Conclusion: Stick with batch conditions

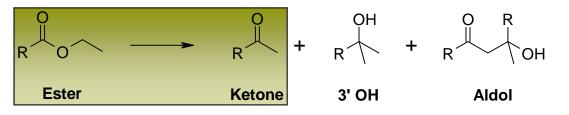
Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY

Initial conditions: Hydrazine hydrate, 2-ethoxyethanol, reflux; 79% yield


Work Up: Product precipitates out, filter and dry.

Alternative solvents NMP, DMF give poor reaction profiles

Insolubility of the product makes flow non viable at the moment!!



- Desired reaction Ester to Ketone
- Troublesome by-product formation, 3'OH and Aldol
 - Loss of yield
 - The reaction Ketone to 3'OH is faster than the desired reaction
 - Aldol is formed during quenching. A retro-Aldol reaction is not possible due to Ketone stability issues
- Un-reacted Ester is difficult to remove
 - A "high" conversion is desired

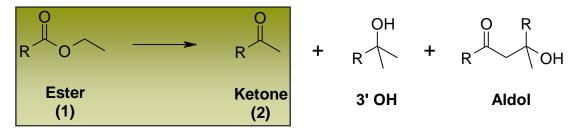
- MeMgBr (2 equiv.) and triethylamine in 2-MeTHF added drop wise to the Ester in 2-MeTHF
- 3 hrs at $T \le -5^{\circ}C$
- Reaction mixture added to a quench solution of AcOH in 2-MeTHF (2 hrs)

Batch <2L 40-57% isolated yield (1-2% 3'OH; 10% Aldol)

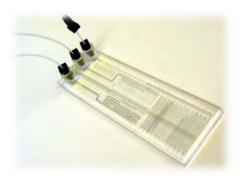
Batch1000L 30% isolated yield (5% 3'OH; 40% Aldol)

CANCER & INFECTION

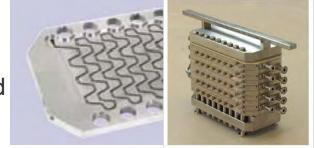
- Approximately 30-40 kg Ketone needed
- Isolated yield would have to be significantly increased

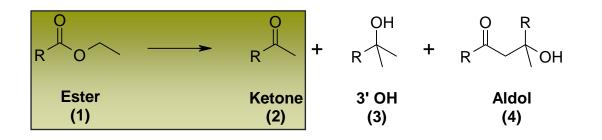

To meet that

- Batch manufacture would require a new route
- Continuous flow?

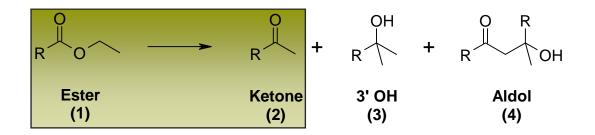


■ Leaving the Tap Open

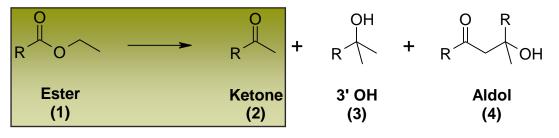



- Optimisation and manufacture in Sigma-Aldrich chip
 - Campaign 1, RSL Mölndal
 - 8 days of development
 - 300 g of (1) converted to 170 g ketone (2), isolated yield 63%.

- Process development and manufacture in Alfa Laval unit
 - Campaign 1c support, LSL Södertälje
 - Process adjustments over 5 days
 - 500 g of (1) converted to ketone (2), not isolated
 - 6L solution / 5 h (25 mL/min)



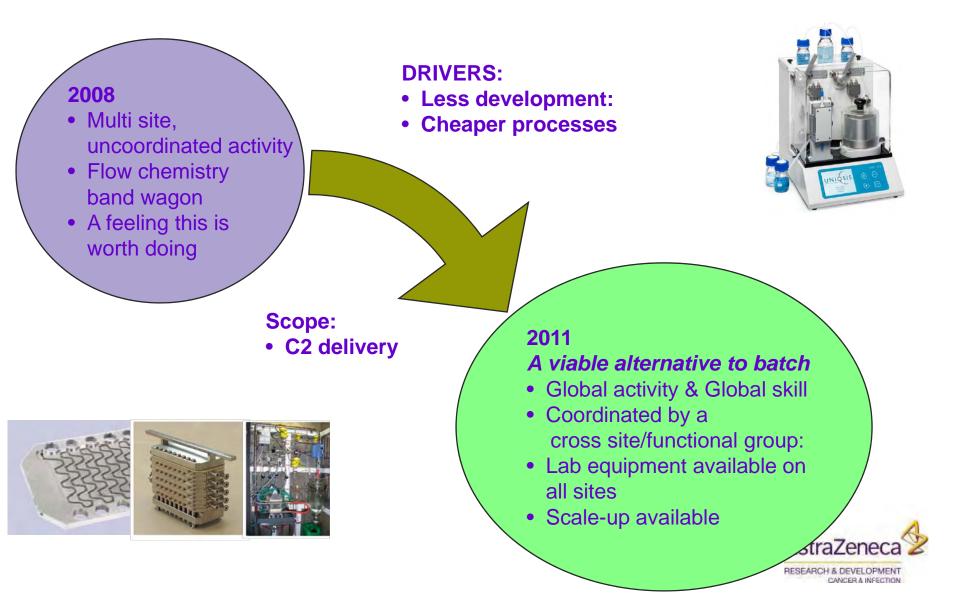
Reactor	Equiv Grignard	Residence	Quench	H	PLC (A	\rea%	⁄₀)
		Time (s)		1	2	3	4
Sigma- Aldrich	1.3	11	Batch	9	80	6	5
ART 1 mm	1.2	30	Batch	6	73	5	16
ART 1 mm	1.2	20	In situ	1.5	93	4	1.5
Sigma- Aldrich	2.2	9	In situ	1	91	9	<1
ART 2 mm	1.6	24	In situ	0	89	11	1


- Ester to Ketone conversion is *temperature sensitive*
- Quench reaction is *mixing sensitive*
- Window of operation to give desired quality of Ketone
 - 1.2-1.7 equivalents of MeMgBr
 - Temperature ≤0°C (cooling media)
 - The higher flow rate the better

For Internal USE ONL

- Input of 34 kg Ester
- Flow rate 72 g/min
- Temperature 0°C to -5°C (cooling media)
- Effective pumping time 92 h
- Output of 27 kg Ketone
- Isolated yield 65%

Reactor	Equiv Grignard			HPLC (Area%))	
		Time (s)		1	2	3	4
ART 2mm	1.2-1.7	12	In-situ	1-7	87-91	4-9	0-0.5



Summary

 $\stackrel{=}{\sim}$ A Vision for the Future (in 2008)

Summary

- AZ has capability to deliver C1-C2 using Flow technologies
 - Next step: Embed as a core capability
 - Several options to expand scope beyond C2
- Flow Technologies compliment existing batch processes
 - Drivers based on reaction requirements
- Future developments in flow
 - Use of polymer supported reagents / scavengers
 - Collaborations for crystallisation and multi phase systems
 - Use of slurry pumps

Acknowledgement

Proprietary and Confidential © AstraZeneca 2008 FOR INTERNAL USE ONLY

Södertälje: Fabrice Odille Anna Stenemyr

Alderley Park: Matt Addie Paul Bethel Phil Walker Gordon Currie Susannah Ford Scott Lamont Stuart Pearson **Steve Stokes** Scott Boyd Moussa Sehailia **Trevor Johnson** Galith Karoutchi

Mölndal: Fritiof Pontén

Reims: Jacques Pelleter Fabrice Renaud Avlon: Matt Welham

