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Encapsulation via a self assembly method (Colloidosomes)
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Encapsulation of living bacteria

Living cells Dead cells Transmission image



Encapsulation with responsive shells

Create capsules with triggerable shell to allow release of agents at specific points in well
For pH sensitivity: Poly(4-vinyl pyridine) (PVP) For a timed release: poly(lactic acid)
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Water core capsules containing
Poly(N-isopropylacrylamide)
with a PVP shell

Poly(lactide-co-glycolide) 50/50
microcapsules with methylene blue
in water as core




Microgels
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Engine oil additives
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Water layer thickness is electrolyte type and

concentration dependent

shell thickness/A
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Shell Thickness with various salts and their

concentrations
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Drying
Drying is non-uniform
We start with a fluid
thin film fluid mechanics - surface tension driven flow

0 min 40 min 90 min

140 min 190 min 250 min
200 nm polystyrene in water



Outline

Drying is non-uniform

Surface tension driven thin film flows
Pressure distribution in drying films
Cracking of drying films

Crack spacing

Segregation in drying films



Fluid flows in thin films subject to evaporation

Surface tension

»

/N evaporation




Fluid flows in thin films subject to evaporation
Particles consolidate first in thinner region
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Evaporation from consolidated region causes flow from bulk to the edge

Particles carried to the edge

No need to invoke faster evaporation from the edge



Drying - Dewetting
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Water pressure from Darcy flow
dP
P _ u
dx K,

Scaling

Max value P* u Y7,
—="u * * _ I *
10,Y/R L kp or P p LU
pressure If P*<10y/R then water never recedes

If P*>10y/R then recession occurs

<1 recession
>1 no recession

107/
Instructive to look at R
P x*



Drying — Open Time

To complete problem we need to estimate

u* Characteristic horizontal velocity estimated earlier
L Characteristic horizontal length scale
10y / 20 3ym, | RA=¢, ) A
Pcap = E ) upH time (min)
P* ’ -

0.5 ¢

Open Time

Pcap =420

20(37770j RL-¢, )

“ 750 E ,u¢n21H
Langmuir 17 (11) 3202 2001.



Directional drying

Dispersion dries from the edges
iInwards.

The particles consolidate into a &
solid.

This solid is rigid, but may
remain saturated with water.







Directional

observe film
during drying

drying

Fronts propagate along
drying direction

&

~100 nm hard spheres
In water

~100 um thick dried
film

Blow nitrogen across
film to dry.



Dry from right to
left

Dynamics @ 1
cm
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Directional drying fronts

Sgﬁglm‘ Crack Drain
: . . Evaporation causes pressure

| " : gradients
fluid == solid
Front Positions Xx=0 X=X, X =X,
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Crack spacing

Capillary
pressure

Position



Two-stage solidification

Using 200 nm particles

Changes in colour
mean changes in
spacing

+ water =

Solidification happens
In two stages.

The first stage is
reversible

The two fronts advance intermittently,
with coupled motion.



Two-stage solidification

Using 200 nm particles

Changes in colour
mean changes in
spacing

Solidification happens
In two stages.

The first stage is
reversible

The two fronts advance intermittently,

Wlth Coupled mOtlon * Langmuir 26(12) 9269 2010.



Two-stage solidification

The two fronts advance intermittently,
with coupled motion.



Two-stage

Solidification Liquid

Weak
solid
The two stages correspond to o
consolidation, and aggregation. R|g|d
To understand these processes, we solid

consider the inter-particle forces.



A=5x10%J

(estimated)

o, = 0.5 uClecm?

(measured)

van der Waals attraction Electrostatic repulsion
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DLVO + caplllary forces
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DLVO + caplllary forces

1
Prediction:
Aggregation pressure
= maximum DLVO repulsion

The front separation and velocity are inversely related.
Their product decreases with added salt.



Dynamics of Cracking



Crack jumping

The drying fronts appear to be correlated with the
fracture front.
Notice how regular the crack spacing is



20 nm Ludox silica particles in water
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Assumptions: Constant elasticity
Linearisation — small amplitude wavelength

In(cl/lj =1In C, +C—1b
h 2 2h

In(cA/h)



Crack Spacing: Stresses at Play
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Capillary pressure reduces as the body yields

Pressure ~ surface tension x surface curvature
Network of particles is elastic

Yield occurs until a local force balance is achieved



Pore elasticity or stress in bed
Ve (G — Pl ) =0 Stress balance

vp =kﬁu Fluid pressure from Darcy flow
p

c is the stress on the particles

o — Pl is called the total stress

One solution is o = PI
This assumes no shear stresses  stress is a diagonal tensor
OK far from edges



Cracking of Elastic films under constant stress
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Energy released per unit advance of crack: du
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da

Energy cost of crack propagation: d—U =G_h

da ‘



Spacing for elastic films
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Film Cracking

‘ Flow

A\

New area created — energy cost

Elastic energy relieved — energy gain

Flow of fluid — energy cost



Inclusion of flow term

2
n v Area of crack: A= Zh—o- tanh(%j
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Energy balance becomes

Elastic energy Energy consumed Energy loss due
released — by creation of 4+  to viscous flow
crack surface of solvent
ho?  (cA 2h((1-g) h o A\, (A
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Spacing for elastic films with flow from crack
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Film Cracking: next steps

Selection rules — experimental data indicates a specific spacing
What determines the selection?

Can we template a specific spacing?



Vertical Segregation

Using one coat can we get a layered coating

Many potential applications:

Expensive active agent at surface
Adhesive component at substrate

Commercial paints have as many as 15 different components



Particles in a film diffuse
Evaporation reduces the top surface
If diffusion is slow then top surface acts like a piston

E>>1
D



Particles in a film diffuse
Evaporation reduces the top surface
If diffusion is fast then particles remain dispersed

E<<1
D



Combine the two effects



Governing equations

% +V-9U; =0 Conservation equation
K(¢1,¢2) .
U = — 2 \V/ Volume average velocity
1 6mnR, H1
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Governing equations

e Component 1
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Governing equations

e Component 2
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Numerical Results
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Volume Fraction

Evolution of profile




% increase in ¢, (surface)

Changing initial concentrations
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% increase in ¢, (surface)

Changing initial concentrations
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% increase in ¢2 (surface)

Changing initial concentrations
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Asymptotic solution

Transform governing equations

= (€ — P4(7)) Pe;

T =17
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Asymptotic solution

Pe,=10
Pe,=20
t=0.4



Atomic Force Microscopy

Laminate

Microscope slide

e Made trays with laminate coating to prevent
edge drying

* Dried films under controlled conditions in
suitable chambers



Pe, (small) = 0.11
Pe, (large) = 0.32

V(Pe,Pe,) =0.19

®, (surface) = 0.21

AFM Results
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\(Pe,Pe,) = 0.96 V(Pe,Pe,) = 2.9

@, (surface) = 0.41 ®, (surface) = 0.27
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AFM Results
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Summary
Films dry non-uniformly
Capillary pressure gradients build up across the film
Water can recede from film edge
Pressure can cause film to crack
Cracks can display oscillatory behaviour
There is a definitive crack spacing

Segregation can be achieved in drying films
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