Stresses & strains in drying colloidal films

A.C.G. Hopkinson, D.M. Holmes, W. J. Clegg

Gordon Laboratory, Department of Materials Science and Metallurgy

McBain Medal for Alex Routh 8th December 2010

'Tough' layered ceramic structures

Making layers by tape-casting

Cracking in aqueous tapes

Any theory of drying cracking must explain

- Why the substrate makes cracking easier
- Why the maximum capillary pressure is so important

Importance of capillary forces

W.P. Lee and A.F. Routh, *Langmuir*, **<u>20</u>**[23] (2004) 9885-9888

Double layer and critical cracking thickness (CCT)

Chiu et al., Journal of the American Ceramic Society, 76[9] (1993) 2257-64

Experimental

- Alumina, AKP-30 (350 nm)
- Sheets made by plastic mixing & burnout of polymer (aqueous PVA gel)

Samples filled with water & dried

Before wetting

5 minutes after wetting

190 minutes after wetting

Young modulus varies with ϕ as predicted

Adhesion to substrate

wet

saturated

Particles bond immediately, but film is still fluid

Through-thickness strain measurement

Lateral drying during height change measurement

 f_i = 0.3, dispersed

Height change after packing front

Height change for weakly attractive slurry

 $f_i = 0.3$, $c_{NaCl} = 0.1$ M, weakly attractive

And in silicas

Silica, 50 nm

Courtesy of Lucas Goehring

DLVO interparticle pair potential, Al₂O₃

Maximum pressure needed for collapse ~ 10⁻⁴ P_{c,max}

What is collapse pressure?

A.F. Routh and W.B. Russell, A.I. Mech. E., <u>44[9]</u> (1998) 2088-2098

Different cracking criteria

- Critical strain-energy release rate due to capillary pressure
- Critical pressure in network causes collapse

Conclusions

- Particles in a network made by plastic processing and burn out of the polymer do NOT crack on rewetting
- Young modulus consistent with that for network of particles held together by surface forces
- Suggests particles are not touching in saturated network
- Collapse strains (3%) occur on drying suspension
- Apparent pressures required ~10⁴ greater than for DLVO
- But collapse over non-DLVO energy hill cannot be associated with cracking, as tapes redisperse