Network Strength and Failure in Coagulated Suspensions as a Probe of Inter-particle Forces

Peter Scales

Particulate Fluids Processing Centre Dept. of Chemical and Biomolecular Engineering University of Melbourne

Gelled Suspensions

Gelled Suspensions

AGGREGATION

Coagulation Bridging flocculation Depletion flocculation Hydrophobic

Precipitation

*

*

FORCES

electrostatics and/or VDW molecular bridging osmotic capillarity between surfaces chemical bonds

Yield Stress Measurements - Shear

Yield Stress Measurements - Compression

Coagulated Particulate Suspensions

12

 $\Phi = 0.43$ $\Phi = 0.39$

 $\Phi = 0.35$ $\Phi = 0.30$

 $\Phi = 0.25$

 $\Phi = 0.20$ $\Phi = 0.17$

Z.Zhou

11

10

Shear Rheology

Yield Stress

Zhou et al., CES, 56: 2901-2920 (2001)

Critical Strain Measurements

Measured using small amplitude oscillatory stress (SAOS) in a vane and cup configuration with Fourier Transform to detect the onset of flow

•critical strain is detected as the growth of the ratio of first to third harmonics

Particulate Fluids Processing Centre A Special Research Centre of the Australian Research Council

Stress-Strain Plots

Stress-Strain Plots

Stress-Strain Plots

Critical Strain Results (IEP)

Strain Comparison

Coagulated Systems Overview

- Suspension yield stress scales with the inter-particle force in a predictable way but shows strong dependence on particle size and volume fraction
- Critical strain (yield strain) in coagulated particulate suspensions appears to mimic the magnitude of the inter-particle (pull off) force in these systems (this makes it a solids independent parameter?)
- Measurement of the critical strain still needs work. Analysis shows that stress at failure for dynamic systems is less than the vane yield stress

Hydrophilic versus Hydrophobic Surfaces

HOPG wettability

Forces between carbon surfaces (HOPG) (Ethanol-Water)

Hupka et al., Langmuir, 26: 2200-10 (2010)

HOPG with and without nano-bubbles

Carbon Yield Stress

Hydrophobic Systems Overview

- The suspension yield stress once again trends as the inter-particle force although the dependencies have not been quantified (data is still sparse)
- A scaling of the yield stress to the wettability and the length scale of the capillary force seems obvious.
- Critical strain measurements in this system should be interesting

Acknowledgements

Tom Healy YK Leong **David Boger Richard Buscall** PC Kapur Z Zhou Stephen Johnson **Mike Solomon Jonathon Foong** H Kodama Xuehua Zhang Ashish Kumar

