

Membrane Emuslification and the use of Particulate Stabilisers

Simon Biggs

Institute of Particle Science and Engineering, University of Leeds, UK

s.r.biggs@leeds.ac.uk

Friday, 12 March 2010

Acknowledgements

- Funding
 - EPSRC
 - Royal Academy of Engineering

Collaborators and Students

- Dr. Olivier Cayre
- Soyeb Manga
- Dr. Nelly Chagneux
- Amandine Simoes
- Dr. Qingchun Yuan
- Dr. Sujii Fujii
- Prof. Steve Armes

Motivation

- Unmet technology need
 - Efficient encapsulation methods that offer:
 - Targeted delivery
 - Triggered release
 - 'Scaleable' manufacturing approaches
 - Cost effective solutions ...

Current approaches

- Hollow Capsules
 - Interfacial polymerisation on emulsion templates
 - e.g. Melamine formaldehyde
 - Polymer precipitation
 - Particle stabilised emulsions
 - e.g. 'colloidosomes'
- Solid or matrix capsules
 - Latex particles
 - Spray dried agglomerates

Dinsmore et al., Science, 2002

Current approaches

- Hollow Capsules
 - Interfacial polymerisation on emulsion templates
 - e.g. Melamine formaldehyde
 - Polymer precipitation
 - Particle stabilised emulsions
 - e.g. 'colloidosomes'
- Solid or matrix capsules
 - Latex particles
 - Spray dried agglomerates

Dinsmore et al., Science, 2002

Previous work on particle stabilised systems

Dinsmore et al., Science, 2002

Cayre et al., J.Mater.Chem., 2004

1

Glogowski et al., NanoLett., 2007

Friday, 12 March 2010

Advantages and challenges

- Advantages
 - defined and easily 'varied' physical/chemical properties
 - controlled wall thickness
 - ability to post- or pre-modify particles
- Challenges
 - reliable manufacturing at scale
 - locking of particles into a permanent shell
 - control of porosity

Manufacturing

• Membrane emulsification

Contact angles

Friday, 12 March 2010

Manufacturing challenges

- Particle contact angle control
 - Need sufficient affinity for the interface
- Adsorption kinetics
 - Stabilise single droplets as they form

Membrane emulsification: particle stabilisation

Membrane emulsification: size control

- 100 nm silica @ 15 vol%
- Aqueous phase (pH < 7; density 1.36)
- Oil (n = 12 mPa.s; density = 0.95)

Effect of shear field on droplet stability

- Key issue is rate of particle absorption into interface
 - attachment rate
 - wetting of particle

Membrane emulsification

- Summary
 - Ability to produce size controlled particle stabilised systems proven
 - Possible to ensure full uptake of stabiliser particles
 - Matching of oil and aqueous phase properties is a key component
 - Can be a relatively gentle process

Responsive Microcapsules

• Example system: sterically stabilised latex

Latex Characterisation

- Dual responsive system
- Contact angle variation with pH

pH 10

60%

38%

2%

Emulsion stabilisation

0.1M KNO3

No added electrolyte

Stable droplets

- Responsive latex stabilised emulsion
- Prepared using homogeniser
- Stable over long periods

Capsule formation

Capsule formation

Capsule formation

- System
 - PDMAEMA stabilised PS latex
 - Dodecane o/w emulsions
 - BIEE cross linker

Dispersed Capsules

Emulsion made from sunflower oil and aqueous suspension of latex coated with PDMAEMA-PMMA

Polymer cross-linked with 3wt% BIEE and oil core removed by washing with ethanol.

Capsules are suspended in Ethanol

Porosity control?

• Vary cross-linker concentration

Robust capsules?

Emulsion made from sunflower oil and aqueous suspension of latex coated with PDMAEMA-PMMA

Polymer cross-linked with 3wt% BIEE

Swelling when ethanol is added diffuses into capsules rapidly Relaxes over time as system equilibrates

Responsive?

Alternative 'locking' mechanism

• Heat treat latex stabilised emulsion

DSC trace for latex particles

System annealed at 92°C shows considerable instability and irreversible aggregation

Images of capsules

System annealed at 86°C

Optical micrograph in water

Optical micrograph dried

SEM image

Current work

- Investigation of the particle attachment kinetics
 - use of microfluidic approaches?

Current work

- Investigation of the particle attachment kinetics
 - use of microfluidic approaches?

Summary

- Capability of producing microcapsules at scale demonstrated
 - Size control possible
- Novel responsive capsule architecture based on sterically stabilised latex
 - Cross-linking provides opportunity to control responsiveness
 - Can produce in concentrated emulsion systems
- Alternative annealing possibility shown