The role of chemistry in feeding the world

David Lawrence SCI, 30th November 2010

Assumptions

- Land available for agriculture will stay ~ constant
- Climate warming is broadly neutral on global yields
 - CO₂ raises water-use efficiency, some yields; H₂O limits others; pests flourish
- World population will grow: 8bn by 2025, 9bn by 2050
- Affluence drives demand for meat, cereals, edible oils
- Current energy use, GHG emissions unsustainable

≥50% more food required on same land area, with improved sustainability

Feeding the world is possible

- 50% more food possible in each of 4 ways
 - raise poor yields to the average by crop
 - eliminate food waste
 - stop eating meat
 - raise ocean productivity to ¼ land productivity
- Outcome likely to be a blend of these

12/8/2010 DKL SCI talk Nov 10 3

Climate change creates work for breeders

- More heat units
 - longer maturities
- Higher night temperatures
 - reduced respiration rate
- More extreme events
 - stress tolerance
- More pests, shifting spectrum

Biologists have some "grand challenges", e.g.

- Nitrogen fixation
- More efficient nutrient use
- More efficient water-use
- Immunity to disease
- Convert C₃ to C₄ photosynthesis
- Plant biomass to replace fuels

• ...

Where are the chemistry "grand challenges?"

- Nitrogen fixation
- More efficient nutrient use
- More efficient water-use
- Immunity to disease
- Convert C₃ to C₄ photosynthesis
- Plant biomass to replace fuels

• ...

Where are the chemistry "grand challenges?"

- Nitrogen fixation
- More efficient nutrient use
- More efficient water-use
- Immunity to disease insect and weed pressure
 - Sensors to reduce food waste
- Plant biomass to replace fuels

• ...

Reducing nitrogen fertilizer impacts

Making nitrogen fertilizer use more sustainable

- New catalysts and/or processes
 - energy 250GJ/t N in 1903 reduced to <40 today
 - how much lower is possible?
- New application regimes to reduce losses
 - variable rate application
 - new formulations may be economic as energy costs rise
- De-nitrification inhibitors
- Chemicals to stimulate early root growth

The phosphate problem

- Absolute requirement for plant growth
- Easily accessible sources close to exhaustion
 - estimates vary from 100-400 years, i.e. needs action
- In theory there is plenty, but:
 - no active recycling (BSE stopped bone use)
 - most occurs as low abundance minerals
 - behaviour in soil very poorly understood

The need to develop soil science

- Soil remains poorly understood
 - macro- and micro-heterogeneous
 - solid state
 - spatial analysis vital, but hard to do non-disruptively
- Lack of understanding limits:
 - carbon capture strategies
 - optimisation of nitrogen and phosphorus applications
 - optimisation of rhizosphere for sustainable productivity
 - targeted delivery of effect chemicals

Cruiser stimulates early root growth

- Vigorous crop establishment
- Increased efficiency of nutrient uptake

Biological v. chemical N fixation

- Biological
 - N-fixation in more crops
 - many genes need moving
 - GM crop
 - 20-40% yield loss via swap of C- for N-fixation
 - more land needed
 - more energy in cultivation

- Chemical
 - Renewable energy
 - nano-catalysts
 - optimised process
 - reduced losses through application and formulation
 - treated plants to increase uptake
 - inhibition of denitrification

Chemical approaches to water sustainability

- Lower energy processes for desalination
- Sensors for on-demand irrigation
- Chemicals to improve tolerance to drought stress

Nanotechnology for low energy desalination

- lon concentration
 polarization zone
 generated in a microfluidic
 channel
- Removes salts from seawater
- Improved energy efficiency

Crop Enhancement chemicals for water efficiency

- Programme containing Growth regulator "Moddus" in Wheat
- Yield +15-25%; Reduced irrigation Water savings 15%
- "Crop per Drop" improvement ca 35%

Ongoing need for new Al's

- Resistance management for F/H/I
 - complement genetic approaches
 - new herbicide moa urgently needed
 - evolving range of species
- Higher regulatory hurdles
 - may mean combining sub-optimal controls, more ST
- Chemical crop enhancement
 - can new 'omic tools enable targeted discovery?

Improving drug design is a key grand challenge in pharma also

12/8/2010 DKL SCI talk Nov 10

Seed treatment: chemicals complement genetics

Abiotic stresses are responsible for more than 50% yield reduction. Thiamethoxam shown to activate proteins that protect against stress.

Stress: drought, heat, salinity, UV light, nutrient deficiency etc.

Sensors to reduce food waste

- Precautionary wastage of food up to 25%
 - over-interpretation of "best before" dates
 - lack of education has reduced consumer discretion
- Many food emit volatiles when "turning"
 - chemical or microbial degradation
- Challenge to develop cheap, specific sensors
 - pence per sensor
 - different sensors for different food type

Examples: moisture content & fruit ripening

scanned in storage or store

sensor changes colour with ripeness

Chemistry can help to feed the world

- Catalysis
 - beating activation energy
- Formulation
 - beating competing pathways for targeted, timed delivery
- Separation
 - beating entropy
- New effectors
 - beating resistance, regulatory standards, plant stresses
- Sensors
 - beating wastage of still wholesome food