

Waste Water Treatment for Fossil Fuelled Power Plant:
Current Practice and Future Trends.

Richard Harries, Associate Consultant E.ON New Build & Technology

Contents

- 1. Historical Overview.
- 2. Sources of Contaminants in Aqueous Discharges.
- 3. Waste Water from Flue Gas Desulphurisation (FGD).
- 4. Waste Water from NOx Removal by Selective Catalytic Reduction (SCR).
- 5. Implications for Carbon Capture.
- 6. Summary.

Review of Discharge Consents and Permits

- Discharge Consents (pH, T, suspended solids, oil).
- North Sea Protocol (1980s).
- List I (Red List) Limited the concentration of Cd, Hg and a range of organic species.
 - List II (Grey List) As, B, Cr, Cu, Fe, Ni, Pb, V, Zn [Al, Ag, Co, Mn, Sn].
- Integrated Pollution Control (IPC)
 - Environmental Protection Act (1990).
- Integrated Pollution Prevention and Control (IPPC) 2000.
- Permits 2010.

Sources of Contaminants in Aqueous Discharges: The Basic Power Plant

- Water Treatment Plant acid and alkali regenerants.
- Cooling Water chlorination and concentration factor.
- Boiler and Turbine Drains oil; metal oxides; dissolved additives.
- Ash Lagoons suspended solids; dissolved metals.
- Coal Stocks Drains suspended solids; dissolved metals; acidity.
- Transformers and Transmission oil.
- Air Heater Washing acidic waste; particulates; metals.

Sources of Contaminants in Aqueous Discharges from Environmental Control Technologies

- Flue Gas Desulphurisation (FGD) (Wet Limestone Gypsum Process)
 - High chloride concentrations (as CaCl₂).
 - Range of metals and other species derived from coal.
 - Particulates: gypsum; limestone; limestone inerts; combustion products.
 - Typical FGD waste water flow for 2000MW power station : 20 – 100 m³/hr.
- NOx Removal by Selective Catalytic Reduction (SCR).
 - Storage of anhydrous ammonia; water deluge for emergencies.
 - Ammonium salts; sulphates.
- Carbon Capture and Storage (CCS) (Post combustion processes).
 - Organic amines and associated products.
 - Ammonium salts.
 - Sulphate species.

Flue Gas Desulphurisation (limestone-gypsum process)

FGD Waste Water: Sources of Impurities

$$SO_2 + H_2O + CaCO_3 \rightarrow CaSO_3 + CO_2 + H_2O$$

 $CaSO_3 + [O] \rightarrow CaSO_4$ [Absorber pH ~ 5.2 – 5.5]

Fine particulates:

- Gypsum.
- Unreacted limestone and inert materials from raw limestone.
- Flyash.
- Unburnt fuel.

Dissolved Species:

- Metal cations derived from fuel (fly ash and volatiles) and limestone;
 - eg Cd, Hg, Ag, Cr^{III}, Cu, Fe, Mn, Mo, Ni, Pb, Sn, V, Zn.
 - Metal oxy-anions As, Sb, Se, B, Cr^{VI}, Mn(?), Mo (?), V(?).
- Anions mainly from Cl and F in fuel.
 - Also sulphate (liquor saturated to gypsum) and trace of nitrate.

e.on

FGD Waste Water Treatment: Typical Input Concentrations and Discharge Limits (mg/l)

Parameter	T °C	рН	TSS	Al	Ag	Cd	Cr	Cu	Fe	Hg	Mn	Мо
Input	40	15	5,000-	100	0.01	0.2	0.02	0.02	0.5	0.001	25	0.1
IIIput			10,000		0.01							
Outlet			30		0.05							
Limit	40								- 10			

Parameter	Ni	Pb	Sn	V	Zn	As	В	Sb	Se	CI	F	N
												(NH_3)
Input	1.0 -	0.02 -	0.01 -	0.05-	5.0 -	0.005	40 -	0.1 -	0.1-	5,000-	20 -	?
	5.0	1.0	0.5	1.0	7.0	- 3.0	100	0.5	0.25	30,000	100	
Outlet	0.2	0.2	0.5	0.1	0.5	0.1	175	0.08	0.15	30,000	20	10
Limit												

FGD Waste Water: Treatment Philosophy

- Raise pH with an alkali [NaOH or Ca(OH)₂] to precipitate metal hydroxides.
- Add a sulphide to precipitate metal sulphides.
 - Use either sodium sulphide solution or tri-mercapto triazine (TMT).
- Add a coagulant to capture precipitated hydroxides and sulphides, plus fine particulates.
 - Typically Ferric Chloride.
- Add a flocculation aid to promote settlement of sludge.
 - Generally a polyelectrolyte.
- Separate water and sludge in a clarifier and sludge thickener.
 - Dewater sludge and dispose to landfill or refire with fuel.
- Clarified water pH adjusted (HCI) and cooled prior to discharge.

Solubility Data: Metal Hydroxides and Metal Sulphides

Schematic of FGD Waste Water Treatment

FGD Waste Water: The Fluoride Conundrum

- In theory Calcium Fluoride has a very low solubility that should always achieve fluoride discharge limits.
 - Solubility product data predicts 3 or 8 mg/l F for saturated CaF₂.
 - •Background calcium concentration should reduce fluoride solubility due to the "common ion" effect.
- In practice, in some plants, it has been difficult to achieve the < 20 mg/l F limit.
- Fluoride precipitation is dependent on both pH and background calcium chloride concentration.
 - •Fluoride concentration decreases as both pH and chloride (calcium) concentration increase.
- Optimal pH appears to be around pH 9.5.

FGD Waste Water – Future Developments

- There is pressure to improve the sulphur removal performance of existing FGD installations.
- This may be achieved by adding up to 1000mg/l of organic acids to the absorber liquor.
 - Typical acids are adipic acid, or a waste product di-basic acid (DBA).
 - These acids buffer the scrubber pH and enhance limestone dissolution.
- These organic acids will be present in the FGD waste water.
 - They will not be removed by currently installed technologies.
 - A form of oxidative or micro-biological digestion will be required.

e.on

Schematic of NOx Removal by SCR $8 \text{ NH}_3 + 6 \text{NO}_2 = 7 \text{ N}_2 + 12 \text{ H}_2 \text{O}$

Limits on Discharge of Ammoniacal Nitrogen

- A standard limit is 10 mg/l ammonia (expressed as mg/l N).
- Higher levels of ammonia risk harm to the aquatic environment.
- Limits originally set for sewage treatment plants discharging into small streams.
- There may be scope for negotiating a higher limit where there is a high dilution factor in the discharge.

Technologies for Removal of Ammoniacal Nitrogen

Technology	For / Against				
Chemical Oxidation	Oxidation of variable effectiveness				
NaOCI; CIO ₂ ; H ₂ O ₂ / UV; O ₃	Risk of tri-halo methane production				
	Risk of scaling and S-N compounds				
Adsorption / Precipitation	Reaction rates slow				
Zeolite adsorption	Effect of high CaCl ₂ background				
Struvite precipitation	Scaling				
Microbiological Digestion	Well established for sewage treatment				
(i) Aerobic : NH ₃ → NO ₂ -	Prefers stable flow, concentration, temp.				
(ii) Aerobic : $NO_2^- \rightarrow NO_3^-$	Conditioning to high Cl- background				
(iii) Anaerobic : NO ₃ ⁻ → N ₂	Potential for process kill				
Reed bed wetlands	Large open area				
	Low temperature – low activity				
	Management of reed beds				

Optimal Management of Ammonia Discharges from SCR

- Manage catalyst grids to minimise ammonia leakage.
 - Minimise air heater deposition and washing.
 - Minimise ammonia uptake in FGD absorber liquor.
 - Sulphate from air heater washing an equal problem to ammonia.
- Maintain a regular routine for air heater washing.
 - Store wash liquor and trickle feed into FGD absorber.
- Manage FGD waste water purge flow to maintain low residual concentration of ammonia.
- Monitor ammonia in FGD absorber liquor / waste water continuously.

Coal Fired Station with Post Combustion CO₂ Capture

Amine scrubbing process diagram

$$CO_2 + 2RNH_2 \leftrightarrow RNHCOO^- + RNH_3^+$$

Chilled Ammonia Process Diagram

Summary

- Control and treatment of power station waste water discharges is an increasingly important area.
- Consistent failure to meet limits could force plant shutdown.
- Each newly introduced control technology for emissions to the atmosphere is accompanied by new challenges for waste water treatment.
- Waste water treatment technologies must be both effective and have a very high reliability.
 - They tend to be sensitive to changes in flow, temperature, and matrix.
- Future legislation may pose increasing challenges for waste water treatment.