

C—*H* activation results in the formation of a C—M bond

C—*H* functionalisation represents the overall process where H is replaced with a functional group (FG)

Mechanisms for arene C—H activation with Pd catalysts

Electrophilic aromatic substitution:

Concerted metalation/proton abstraction:

$$\begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

C–H arylation: challenges

C—H bonds are ubiquitous and diverse... How to activate the desired one?

Regioselectivity

High bond strength of an aryl C—H bond

(about 110 kcal/mol, versus for example 51 kcal/mol for C–I)

Reactivity

How to protect sensitive functional groups? Chemoselectivity

More recently, a bimetallic intermediate Pd^{IV}/Pd^{II} or Pd^{III}/Pd^{III} has been proposed

Good selectivity mono- versus bis-arylation Vital role of PivOH (*vide infra*)

Fagnou, OrgLett, **2008**, 4533

It is proposed that CuI/Cs₂CO₃ mediates the C—H activation step, which subsequently transmetallates to Pd

Higher temperatures result in deglycosylation

Fagnou, JACS, 2006, 16496

Lei, *JACS*, **2010**, doi:10.1021/ja103050x

Lipshultz, JACS, 2010, 4978

Larrosa, *OrgLett*, **2009**, 5506

Su, ChemComm, 2010, 5876

Steric based selectivity

Benzoquinone is ligated to the Pd during the C—H activation step, and influences regioselectivity

KIE of 3.4 (in second arene) suggest a sigma bond metathesis C—H activation step

Sanford, JACS, 2007, 11904; JACS, 2009, 9651

Similar to Sanford's, the C—H activation on the second arene is directed by sterics

Acidic arenes, such as pentafluorobenzene react sluggishly

O2 is used as the terminal oxidant

Use of $Cu(OAc)_2$ as the oxidant leads to C3 arylation

It is suggested that Pd cluster formation and breaking are responsible for the switch in selectivity

Fagnou, JACS, 2007, 12072; Science, 2007, 317, 1172

Future developments

Development of new catalytic systems allowing milder conditions

Exploitation of new directing groups for C—H activation

Development of more robust oxidative couplings using O_2 as the terminal oxidant

Methodologies that do not require the use of glovebox or Schlenk techniques

Organocatalysis?

More reading

General reviews on C—H functionalisation:

Thematic issue in *Chem Rev*: **2010**, issue 2. C-H activation in the *Topics in Current Chemistry series*, Eds. Yu and Shi, **2010**, Springer Upcoming thematic issue in Chem Soc Rev: mid-2011

Recent reviews on C-H arylation:

Doucet, *ChemCatChem*, **2010**, 20; Ashenhurst, *Chem Soc Rev*, **2010**, 540; Ackerman, *ACIE*, **2009**, 9792; Yu, *ACIE*, **2009**, 5094; Bellina, Rossi, *Tetrahedron*, **2009**, 10269; Lautens, *Chem Rev*, **2007**, 174

Other reviews:

Bergman, Ellman, *Chem Rev*, **2010**, 624; use of rhodium catalysts Marder, Hartwig, *Chem Rev*, **2010**, 890; C-B bond formation Eisenstein, *Chem Rev*, **2010**, 749; mechanisms