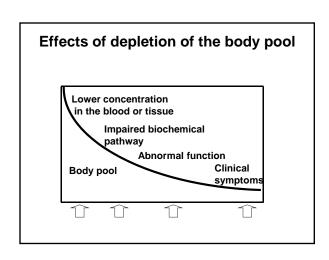
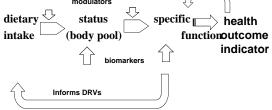

The role of micronutrients in the maintenance of optimum human health


Hilary J Powers
University of Sheffield

The scale of requirements					
Vitamins:					
water-soluble: B12		folate	B1, B2, B6, C, niacin		
fat soluble):	D, K, A	E		
	pg	ug	mg	gram	
		\Box	\Box	\bigcirc	
Minerals:		iodine	iron, zinc, selenium calcium	Na, K, Cl	

Central roles in metabolism and human health Energy metabolism: B1, B2, B6, niacin, Fe, Cu Cognition: folate, B12, zinc Teeth: A, D, C, Ca Vision: A, B2 Immune system: Neuromuscular: A, Zn, Fe, Se B vitamins, A Blood: Reproductive system: K, B2, B6, folate, B12, Fe A, E, zinc, Skin: A, C, B6, niacin, skeletal K, D, C, Ca


Window of adequacy

Criteria for adequacy?

- Avoidance of clinical symptoms of deficiency?
- Maintenance of biochemical markers?
- · Saturation of tissue?
- · Special benefits?
- Avoidance of toxicity

Setting dietary reference values informs thresholds modulators status specific response health

Determinants of poor micronutrient status

- diet
 - including nutrient/nutrient interactions
- · body stores
 - fat vs. water soluble
- · rate of turnover
 - energy requirement, infection, pregnancy
- malabsorption
 - gastrointestinal function, gut microbiota,
- genotype
 - Eg.polymorphisms in nutrient handling

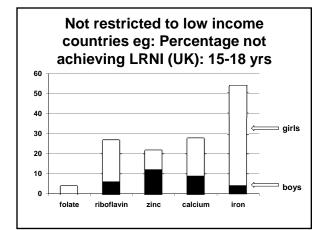
The global burden of micronutrient deficiency

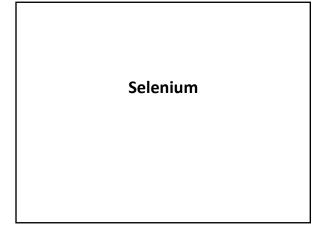
micronutrient	prevalence (million)
vitamin A*	Pre school 140 Pregnant women 7
iodine	2000
zinc	2000
iron deficiency anaemia**	4-5000

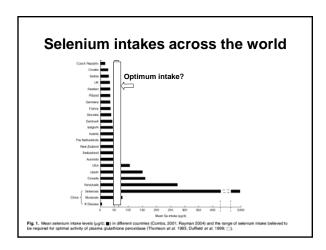
Health implications

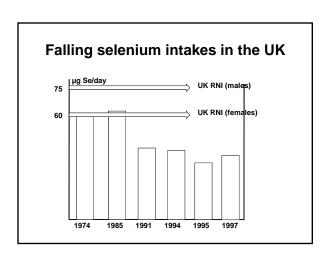
• Vitamin A deficiency blindness, infection

• Iodine deficiency \Box poor cognitive

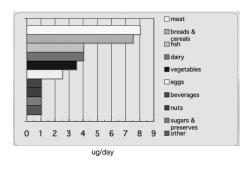

development


• Zinc deficiency \Box


impaired growth,


• IDA

infection, stillbirths
poor cognitive
development, reduced
work performance



Because...

- Reduced import of US wheat, with high Se content
- Increased use of sulphur fertilizers on crops
- High-grain yields and associated reduced Se concentration (by dilution)
- Reduced combustion of fossil fuels (which generates particulate selenium)

Sources of selenium in the UK diet

Documented effects of low intakes

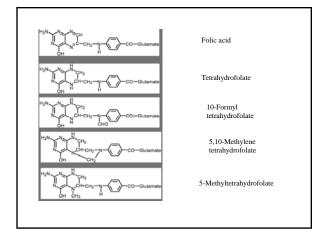
- Impaired immune function
- Reduced antioxidant protection
- Impaired fertility
- Cognitive impairment
- Increased cancer risk

Does selenium influence cancer risk?

- Skin cancer
 - NPC trial in men with a history of skin cancer. 200m Se for 4.5 years. No significant effect.
- Lung cancer
 - NPC trial: reduced risk in those with lowest baseline status
- Prostate cancer
 - NPC trial: reduced risk in those with lowest baseline status; effect sustained after 2 further years follow-up. Supported by 2 cohort studies.
- · Colorectal cancer
 - NPC trial: reduced risk; supported by one cohort

The SELECT trial 0.07 0.06 90.0 0.04 0.03 0.01 8328 8039 8373 8096 8341 8083 8371 8097

Cumulative incidence of prostate cancer according to intervention group.

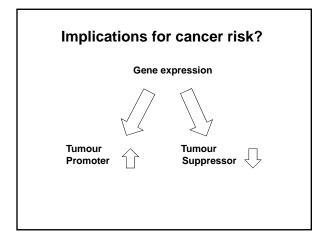

No protective effect of Se (or vitamin E). Study terminated early.

Selenium can be toxic

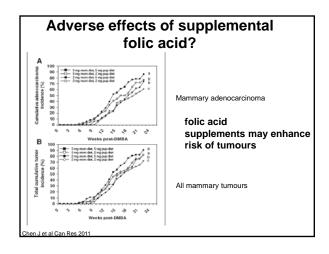
- NOAEL
 - 15μg/kg body weight
- LOAEL
 - 28μg/kg body weight* Hair loss
 - Nail changes
- Selenosis
 - 90μg/kg body weight
 - Hair loss
- Skin lesions
- Nausea and vomiting LOAEL = 1500µg/day for a 55Kg adult

Folate	

Functions of folates

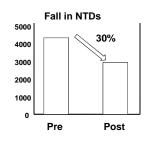

- •Synthesis of purines and pyrimidines
- •Amino acid metabolism
- •Methyl donor (DNA, amino acids, lipids)

Effects of low intakes: megaloblastic anaemia Large red blood cells Large neutrophil (white blood cell) with multilobed nucleus


Neural tube defects

Dysregulation of DNA methylation? Tetrahydrofolate SAM SAM SAM SAM SAM SAM Homocysteine 1) cystathionine synthase 2) methyonine synthase 3) 5.10 methyeneletrahydrofolate reductase Cystathionine

Benefits of higher dietary intakes? • Reduced risk of NTDs? • Reduced risk of colorectal cancer? • Reduced risk of stroke?



Mandatory fortification of flour with folic acid?

• 300µg folic acid/100g flour

and

 restrictions on fortification of other foods

Summary

- Micronutrients have key roles in many metabolic processes
- Understanding micronutrient function is central to setting dietary requirements
- Micronutrient status influenced by diet and modulating effects of non-dietary factors
- High intakes may provide special benefits but may also pose risks

1	1