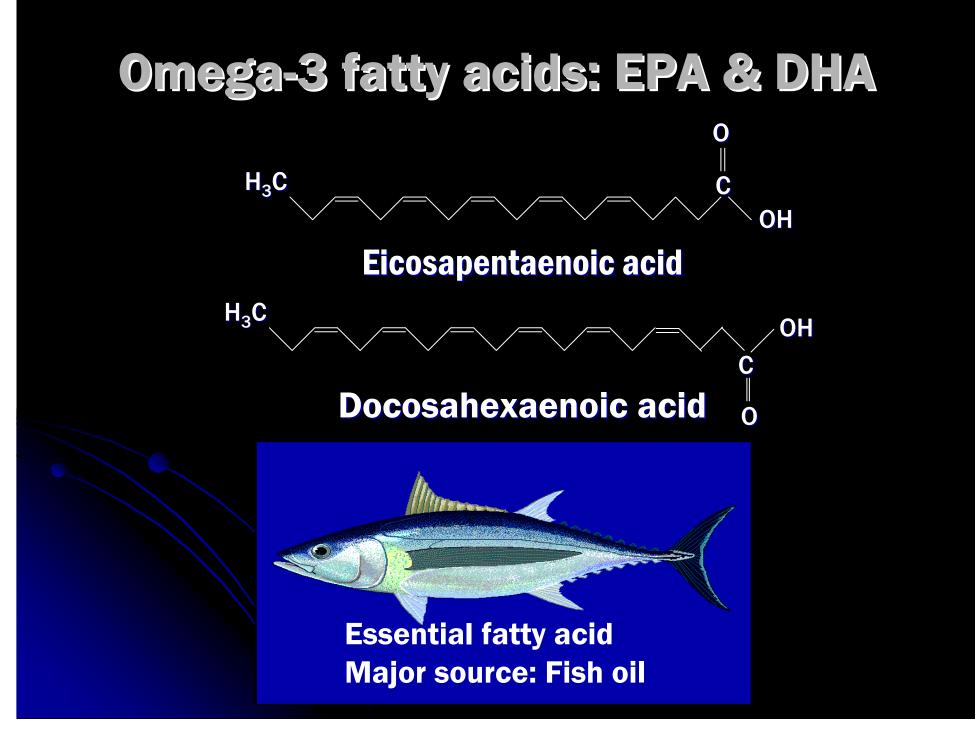

A basket of new oil compositions from palm oil products via enzymatic process

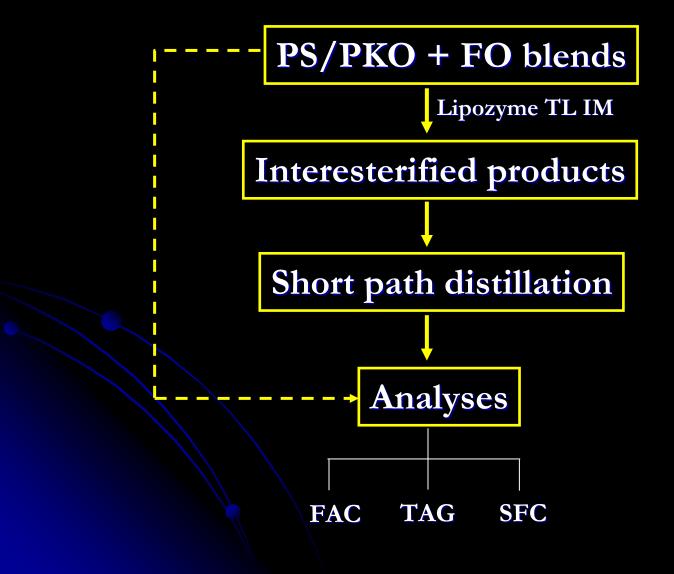
> Nuzul Amri Ibrahim Malaysian Palm Oil Board


Production of Palm-based Margarine Containing Omega-3 Fatty Acids by Enzymatic Interesterification

Nuzul Amri Ibrahim Zaleha Omar Miskandar Mat Sahri

Objectives

- To produce palm-based margarine enriched with omega-3 fatty acids
- To study the effect of adding fish oil on the blends and enzymatic products


Omega-3 fatty acids (EPA & DHA)

Potential health effects:

Reduction of cardiovascular disease risk,
 Harris W. S (1989), J. Lipid Res, 30, p 785-807.
 Anti-inflammatory effects including reduction of symptoms of rheumatoid arthritis

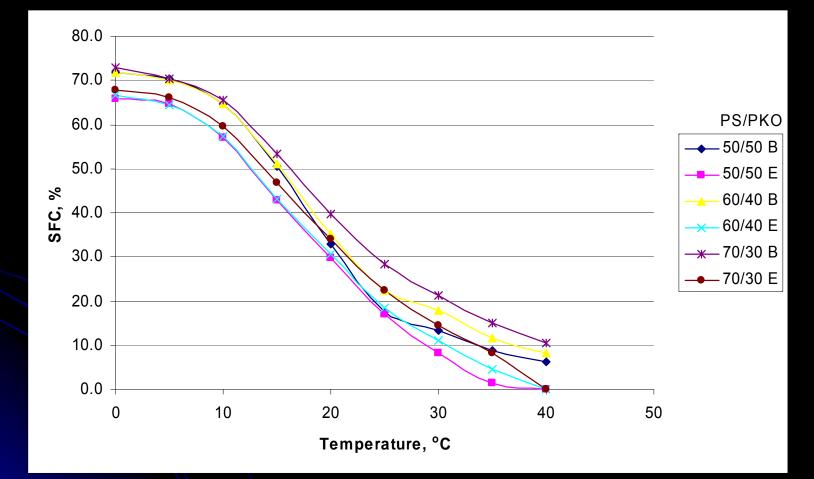
Kremer J. M et al. (1995), Arthritis Rheum, 38, p 1107-1114.

Experimental approach

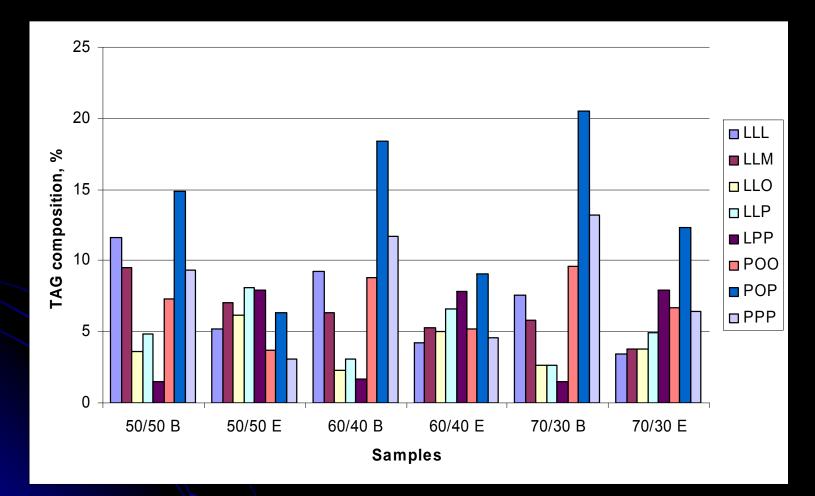
Results and discussion

Fatty Acid Composition (%)

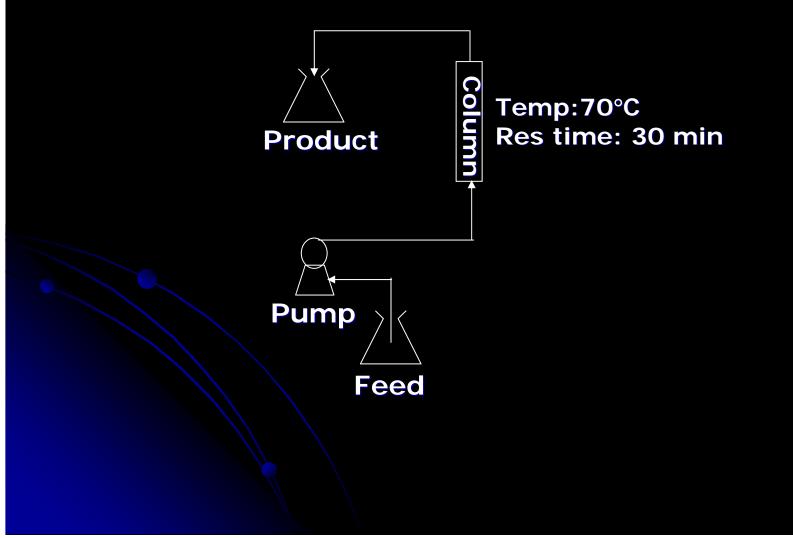
	C12	C14	C16	C18	C18:1	C18:2	n-3
PS	0.3	1.0	57.9	5.1	27.9	6.7	0.0
РКО	48.8	15.8	7.9	2.0	14.4	2.6	0.0
FO	0.0	3.0	13.7	7.1	26.2	3.9	28.0
+10% FO PS/PKO 50/50	22.9	8.0	28.1	4.0	19.9	4.8	3.3
PS/PKO 60/40	18.4	6.7	32.5	4.3	21.3	5.0	3.3
PS/PKO 70/30	14.7	5.6	35.8	4.8	21.6	5.2	3.2


Only major FAC

Lab-scale: Batch EIE (continue)


					SFC, %)				Crysta
FO: 10% Tem	p 0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	form
50/50										
PS/PKO B	78.3	76.7	72.2	57.4	39.2	19.8	14.8	10.3	6.4	β'+β
PS/PKO E	74.5	72.9	66.1	49.8	34.4	18.9	9.2	1.7	0.0	β'
+ FO B	71.8	70.4	64.6	50.4	32.9	17.6	13.4	8.9	6.1	β'+β
+ FO E	65.9	64.6	56.9	42.7	29.8	16.9	8.3	1.5	0.0	β'
60/40										
PS/PKO B	79.0	77.7	72.1	58.8	41.0	25.3	19.9	14.0	9.0	β'+β
PS/PKO E	74.5	72.3	65.5	51.3	36.6	22.5	13.7	6.0	0.0	β'
+ FO B	71.9	70.0	64.8	51.2	35.3	22.5	17.8	11.7	8.3	β'+β
+ FO E	66.6	64.4	57.3	43.2	30.5	18.3	11.1	4.6	0.0	β'
70/30										
PS/PKO B	79.8	78.4	72.5	60.4	45.2	31.8	24.3	17.6	10.9	β'+β
PS/PKO E	74.8	73.7	68.3	56.3	42.2	28.8	19.4	11.7	1.9	β'+β
+ FO B	72.8	70.3	65.5	53.3	39.8	28.3	21.3	15.0	10.5	β'+β
+ FO E	67.8	66.0	59.6	46.8	34.1	22.4	14.6	8.1	0.0	β'+β

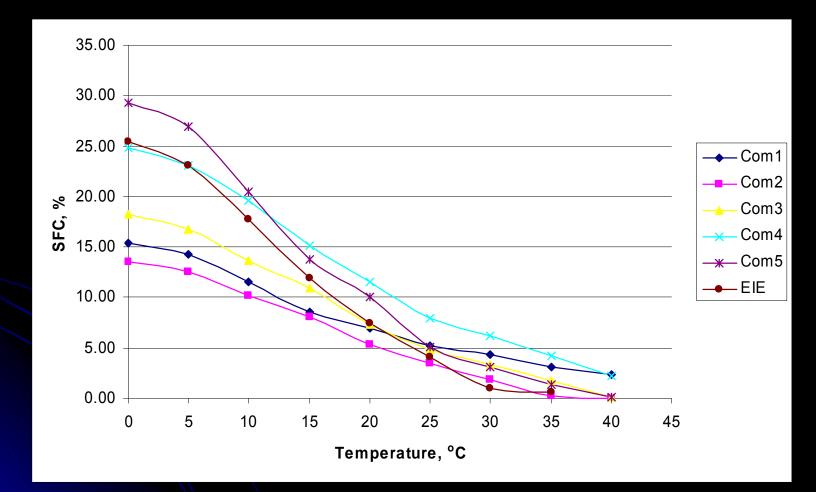
B: Blend; E: EIE product


SFC (FO: 10%)

Triacylglycerol content Samples: + 10% FO

Continuous Enzymatic IE: Pilot-plant scale

Margarine formulation


Interesterified PS/PKO 1/1 + 10% FO

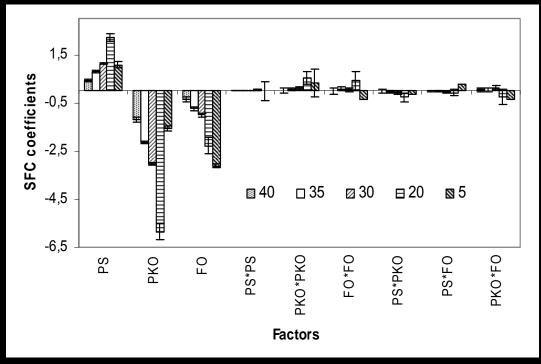
- Liquid oil: Canola
- Other ingredients: Water, colour, antioxidant, emulsifier, butter/+ peanut flavour
- Properties:
 - Spreadable
 - Strong fishy odour and taste
 - 3% FO: mild fishy odour and taste

SFC

Comparison with commercial n-3 margarine

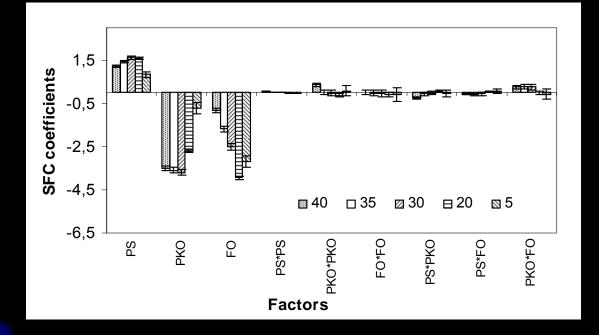
Effect of oils on SFC

 Fractional factorial design by RSM assisted by MODDE7 ♦ 3 factors and 3 levels Factors: PS, PKO, FO Response: SFC (5, 20, 30, 35, 40 °C) ✤ 13 oil blends Palm stearin: 60 – 90% Palm kernel oil: 10 – 40% • Fish oil: 0 – 10%


Model fitting

 $\mathbf{Y} = \beta_0 + \sum_{i=1}^{3} \beta_i \mathbf{X}_i + \sum_{i=1}^{3} \beta_{ii} \mathbf{X}_i^2 + \sum_{i=1}^{2} \sum_{j=i+1}^{3} \beta_{ij} \mathbf{X}_i \mathbf{X}_j$

where Y is response variables, $\beta 0$ intercept, βi first-order model coefficients, $\beta i i$ quadratic coefficients for the *i*th variable, $\beta i j$ interaction coefficients for the interaction of variables i and j, and Xi are independent variables


R²: > 0.95 ANOVA: No lack of fit

Effect of oils on SFC in blends

Coefficient plot: • FO supresses the increase of SFC due to high PUFA content • Major impact at 5 °C • As temperature increases, effect of FO become diminished

Effect of oils in EIE products

- FO has major impact at 5 and 20 °C
 - Rearrangement of fatty acids led to change in crystallization behaviour
- Positive interaction between FO and PKO at 30-40 °C
 - FO and PKO led to an increase of SFC in interesterified product

Conclusion

- Interaction between FO and PKO contributed to the increase of the SFC of the interesterified product
- Interesterification process reduced the SFC
- Even though FO content was only 10%, it has strong influence on the melting profile
- Melting characteristic of the EIE margarine is comparable to the commercial n-3 margarine
- It is possible to produce n-3 margarine hardstock via enzymatic process, but a suitable flavour must be added to mask the fishy odour and taste

Structural Modification of Palm Stearin by Enzymatic Routes to Produce High Valued Oil Products

> Siew Wai Lin Nuzul Amri Ibrahim

Objectives

 Interesterification of double fractionated palm stearin and canola oil by lipozyme TL IM.

 To determine the physico-chemical properties of the products.

Material Preparation

- Hard palm stearin was melted and mixed with canola oil (CO) in proportions ranging from 20 to 80% palm stearin, in 10% increments (w/w).
- Six blends of the mass ratio of hard palm stearin to canola oil (PS:CO) were prepared: 20:80, 30:70, 40:60, 50:50, 60:40 and 70:30.
- 100g of PS:CO blends were reacted with 10% (w/w) of conditioned immobilized enzyme and 10% (w/w) of molecular sieves batch system at 60°C and 25 rpm/min for 24 hours.

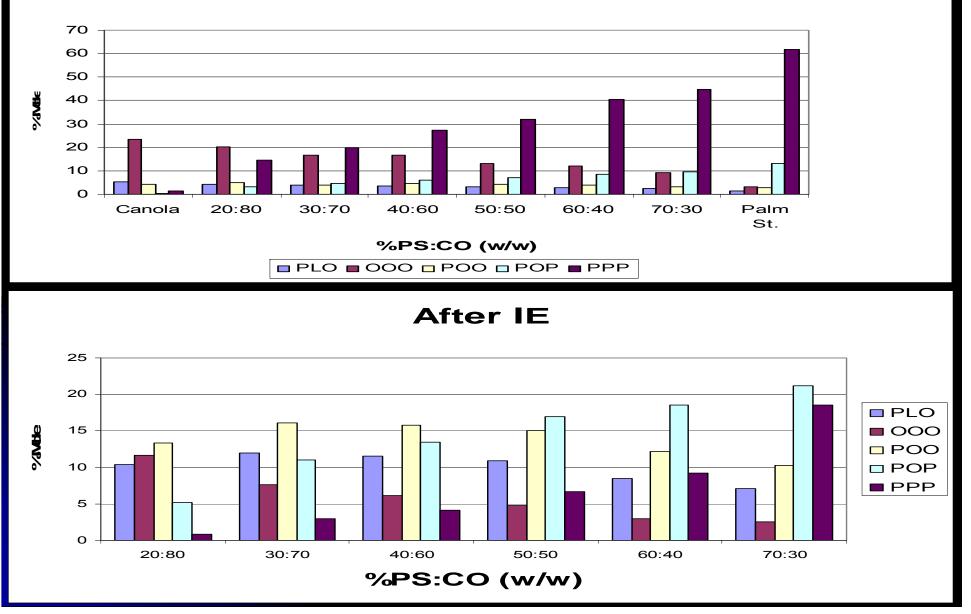
Analysis

Chemical

- Free fatty acid
- Triglyceride profile
 Solid fat content
- FA composition
- Regiospecific analysis
 Polymorphism

Physical

- Slip melting point


 - DSC analysis

RESULTS & Discussion

Chemical Analysis

TAG Profile

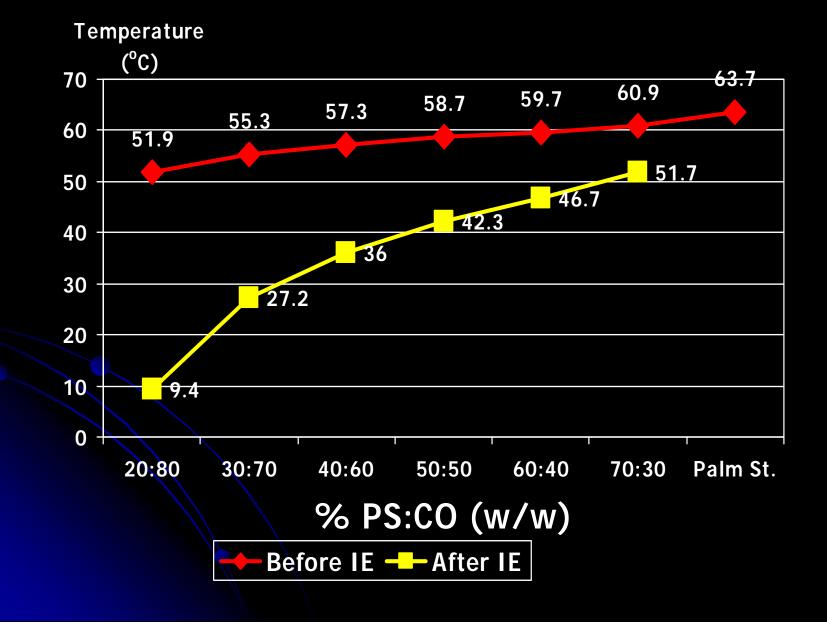
Before IE

TAG Profile

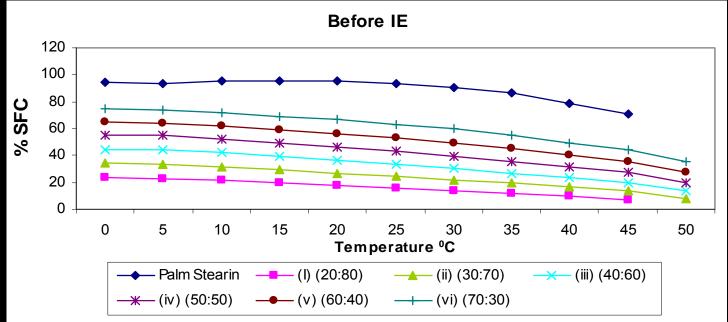
 The interesterified blends showed a decrease of PPP and OOO (high melting and low melting TAGs) but an increase of POP, POO and PLO content.

• The blend of PS:CO 30:70 exhibited the highest increment of POO (12.3 mol %) after interesterification by TLIM lipase.

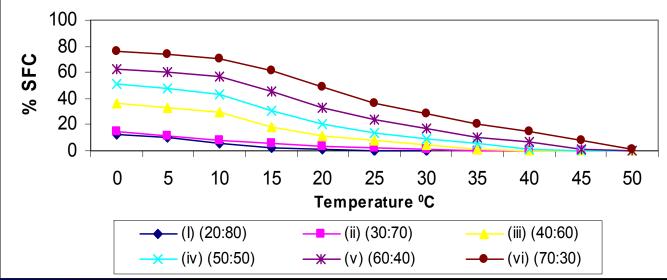
Fatty Acid Ratio


 Dietary intake (WHO) suggested that the n-6 to n-3 fatty acid ratio should not exceed 5 to 1 for a healthy balance.

 All the experimental PS:CO blends had optimal n-6 to n-3 fatty acid ratio below 5:1

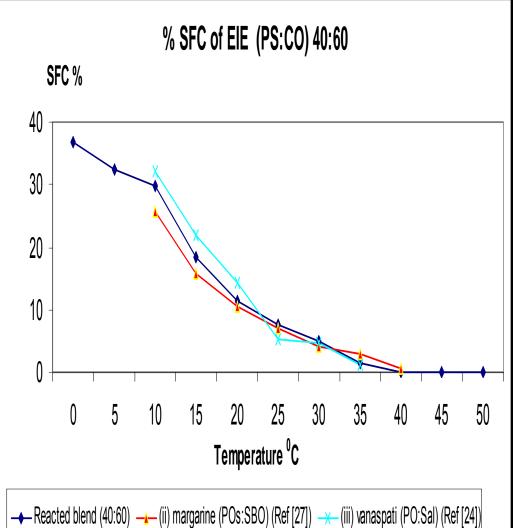

RESULTS & Discussion

Physical Analysis


Slip Melting Point (SMP)

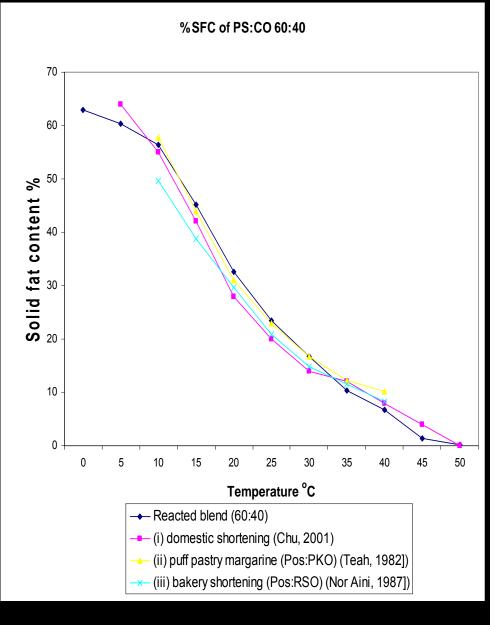
Solid Fat Content

After IE


Solid Fat Content (SFC)

 The SFC of margarine at 35°C should be below 5% in order to show complete melting in the mouth without leaving a waxy coating on the palate.

 The IE PS:CO blends of 20:80 (0%), 30:70(0.2%), 40:60(1.4%) which have lower than 5% of solid fat at 35°C, are all meeting this requirement.


Sample vs Fat Products (SFC)

Fat	FB 1	FB 2	FB 3
Blend		margarine	vanaspati
Palm St	40	50	
Canola	60		
SBO		50	
PO			80
Sal			20
% SFC			
10°C	29.8	25.8	32.2
15°C	18.3	15.9	21.9
20°C	11.3	10.6	14.2
25°C	7.5	7.0	5.3
30°C	5.1	4.1	4.7
35°C	1.4	2.8	1.3
40°C	0	0.5	
SMP	36.0		38.5°C

Sample vs Fat Products

Fat Blend	FB 1	FB 2	FB 3
Palm St	60	80	70
Canola	40		
PKO		20	
Rapese			
ed			30
% SFC			
10°C	56.3	57.8	49.7
15°C	45.1	43.9	38.8
20°C	32.6	31.1	29.7
25°C	23.5	22.9	20.9
30°C	16.8	16.8	14.9
35°C	10.3	12.2	11.5
40°C	6.7	10.1	8.2
SMP	46.7°C		43.5°C

Polymorphic Crystallization

- Increased of β' polymorphs after IE, not sufficient for margarine and shortening application.
- β crystal is desired in pastry margarine meant for piecrust making to produce stiff and hard product consistency.
- The formation of β crystals can be suppressed by adding sorbitan tristearate about 0.3-0.5% into the fat blends.

% PS:CO	Polymorphic form (s)			
	Before IE	After IE		
20:80	β	β > β'		
30:70	β	$\beta > \beta'$		
40:60	β	$\beta = \beta'$		
50:50	β	$\beta = \beta'$		
60:40	β	$\beta = \beta'$		
70:30	β	$\beta = \beta'$		
Palm stearin	β			

Conclusion

Chemical aspect

- Interesterification process had caused some changes in chemical composition of PS:CO blends that determines the physical and nutritional value of palm stearin.
- The nutritional properties of palm stearin has been increased by incorporation of canola oil to produce high percentage of essential fatty acids and low trans-fatty acid potential for fat spread application.

Conclusion

Physical aspect

- Based on SMP and SFC results, some of the IE blends are suitable for margarines and shortenings.
- Improvements are however required for attaining suitable polymorphism and other required characteristics.

The Palm Oil EVENT OF THE YEAR is back! The Malaysian Palm Oil Board is organizing

15-17 November 2011 Kuala Lumpur Convention Centre Kuala Lumpur, Malaysia

contact us at 03 87694568 or visit www.mpob.gov.my See you at PIPOC 2011 Kuala Lumpur Malaysia 15-17 November