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Chemical space — the numbers

ca 600-1000 drugable targets
2500 therapeutically relevant genes

1093 possible stable structures with less than 30 non-

% hydrogen atoms (C, N, O, P, S, F, Cl and Br), with a
L molecular weight of less than 500 dalton

B 10%0-24 possible structures from currently known
synthetic methods.

B winning the lottery 107 to 1 chance

E  10Y number of seconds since the Big Bang
(15 billion years)

Pfizeig

Nature Drug Disc. Rev. (2002), 1 (9), 727-730 Nature Drug Disc. Rev. (2003), 2,38-51



Chemical Space — A synthetic chemist’s
definition!
What our molecules really look like:
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Accessing chemical space

()

Methodology evolution

Sandwichi: .




1) Suzuki Coupling

* Improving the methodology of a Nobel prize winner??
e Our “bread and butter” for SP2-SP2 couplings in the pharma industry :

(|)H
B Pd(PPhy),, aq Na,CO, R
R R
X Toluene/EtOH 100°C
* Yet how much are we biasing/restricting our chemical space by starting
with boronic acids?

e Commercially available in Scifinder:

B CO_H
o

5094 250701

* It’'s more than just the numbers..........



Carboxylic Acid Vs. Boronic Acid: Chemical
Space Comparison
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Carboxylic acids open up more heterocyclic design space! @



Expanded space.....

» Goossen decarboxylative coupling protocol enables carboxylic acid to be
used as starting material

COZK 7.5mol% Cu,O, 15mol% phen G R'
R' 2mol% PdBr,, 3mol% TolBINAP
R + - o
TfO NMP, 190 °C/150W, 10min

48 examples, 40-99% yield
0-, m-, p-substituted acids

Chem. Eur. J . 2009, 15, 9336-9349
e Several examples of heterocyclic acids

5mol% Ag,CO,, 9mol% PPh, Cl

Cl
20mol% 2,6-lutidine
N N COZK + - N XN 87(y
\\_ NMP, 130 °C/150W, 10min \\_ 0
O TfO 3

Chem. Eur. J . 2010, 16, 3906-3909 @
&




2) Aromatic trifluoromethylation

* CF; group loved by medicinal chemists but its introduction used to be a “holy
grail” for synthesis.
* Typically involved chloride exchange with fluoride under harsh conditions

Cl cl \F
HF and/or ShF,
Cl - F

Swarts reaction

Bull. Soc. Chim. Belg. 1892, 24, 309

* Fantastic progress made in academia over the last 3 years:
e Amii — 2008. First aromatic halide to CF; catalytic in copper:

CuX (10mol%)

! _ ligand (10mol%) CF,
R + CF;-SiEt, - R
KF (2 eq.)

NMP/DMF 1/1
60°C, 24h

Z
EtO,C cl N~ CF,
89% 63% 95%
p]
Chem. Comm. 2009, 14, 1909-1911 @




Aromatic trifluoromethylation

* Buchwald 2010: Trifluoromethylation of aryl chlorides!

CF,
R

Science. 2010, 328, 1679-1681

Pd,(dba), (6mol%)
Brettphos (9mol%)

Cl
R + CF,-SiEt,
KF (2 eq.)

dioxane 130°C
20h

LT

72% ,B” 88%
/

CF, 80%

 Xiao 2011: excellent range of 5 and 6 membered heteroaromatic substrates

©\ O Cu (3Eq.) .
- ~3

DMF 60°C
CF oTf 10h

Angew. Chem. Int. Ed. 2011, 50, 1896-1900

T

C 95%

(j/CF3
NZ 91%

98%

3

e Buchwald 2011: Oxidative trifluoromethylation of boronic acids at r.t.!

MeO,C CF
OH 2 8 A\ CE
I Cu(OAc), (1 eq.) 3
. CF, N

=N
phenanthroline (1.1eq)
R OH 4 CF,SiMe, - R
CsF (2 eq.), O, (1atm)
DCE or iPr-CN, 4A MS

r.t. 1-4h

J. Org. Chem. 2011, 76, 1174-1176

Cl \
68% 0 61% Boc

CF,




An 1IN house example

*Sulfonamide is another group loved in drug design but substituent scope is generally
limited to commercial availability (or “synthesisability”)of sulfonyl chlorides:

|C|) 0
R1 I R1
R—s—NZ > rR—s—cl  + HN]
g R2 I R2
O
sulfonyl
chloride

*Common methods to synthesise sulphonyl chlorides:

1) n-BulLi ﬁ

] Het/Ar—SH

Het/Ar—X < Het/Ar—ﬁ—Cl — or ————> Het/Ar—X
2) 30,{0) O Het/Ar—SR
3) SO,Cl,

U/ CISO;H
Het/Ar—H @
G



An 1IN house example

*Sulfonamide is another group loved in drug design but substituent scope is generally
limited to commercial availability (or “synthesisability”)of sulfonyl chlorides:

O
|| R1 I R1
R—S—NZ > r—s—c + HN]
1 R2 | R2
@) @)
sulfonyl
chloride
eCommon methods to synthesise sulphonyl chlorides:
. @]
1) n-BuLl I Het/Ar—SH
Het/Ar—X < Het/Ar—ﬁ—cl — or ——> Het/Ar—X
2) SO(9) 0 Het/Ar—SR
3) SO,Cl, |—|
CISO,H
X Regiochemistry driven by substituents.
X Requires electron-rich rings.
Het/Ar—H

I I X Low FG tolerance - strongly acidic.
Pfizeg



An 1IN house example

*Sulfonamide is another group loved in drug design but substituent scope is generally
limited to commercial availability (or “synthesisability”)of sulfonyl chlorides:

I I
R1 R1
R—S—NZ > Rr—s—cl + HN]
| R2 1 Ro
O 0
sulfonyl
. chloride
eCommon methods to synthesise sulphonyl chlorides:
s
. 0
1) n-Bull I Het/Ar—SH
Het/Ar—X < Het/Ar—ﬁ—CI — or ———> Het/Ar—X
2) S0,{0) O Het/Ar—SR
3) SO,Cl,
CISO.H
Het/Ar—H

X Organometallics — air-sensitive, difficult
to handle, low FG tolerance. @

X SO, gas- hazardous.



An 1IN house example

*Sulfonamide is another group loved in drug design but substituent scope is generally
limited to commercial availability (or “synthesisability”)of sulfonyl chlorides:

I I
R1 R1
R—S—NZ > R—s—cl + HN\/
g R2 | R2
O
sulfonyl
chloride

*Common methods to synthesise sulphonyl chlorides:

1) n-BulLi

Het/Ar— SH
Het/Ar—X < o - Heta
2) Soz(g) HetiAf—SR ....................................................................................
3) SO,Cl,
CISO,H
X Requires strongly acidic conditions.
Het/Ar—H

X Lack of general/mild methods for converting

Het/Ar-X to Het/Ar-SH(or R).
Ffizerg



* Aryl/heteroaryl halide definitely a better starting point than sulphonyl chloride to
maximise chemical space accessed by sulfonamide synthesis. Commercially available in

Scifinder:
SO,Cl |
9l €

6503 108253

e Oxidation of thioacetates to sulfonyl chlorides well established......

0
J\ NCS W _Cl
Ar—S - ArT{ Synthesis. 2006, 1896-1900
2M HCI-MeCN Y
10°C

e ...but their formation from aryl halides not well precedented.

* However formation of thiobenzoates from aryl iodides is well precedented....
0

Q Cul (10 mol%)
)j\ 1,10-phen (20 mol%) »\Ph
P = —_
Ar—| + HS Ph ProNEL (2 eq) Ar—S
toluene >95% conversion (HPLC)

reflux, 16 hrs
Itoh, T. et. al., Tet. Lett., 2006, 6595

* So how about oxidation of thiobenzoates to sulphonyl chlorides??? @:@



Optimisation Studies

TCCA (1 eq)?t BnMe;NCI (3 eq), H,0 2to0  90%
TCCA (1 eq) BnMe;NCI (3 eq), H,0, NEt; (1 eq) 9-11 No reaction
TCCA (1 eq) BnMe;NCI (3 eq), H,0, Na,CO; (1eq) 6to5 87%
TCCA (1 eq) BnMe;NCI (3 eq), H,0, K,CO; (1 eq) ~4 100%"
TCCA (1 eq) BnMe;NCI (3 eq), H,0, NaOAc (1eq) ~1 100%"
HOCI (~3eq) None 1-2 Little reaction
HOCI (~3eq) NaOAc (2 eq) 8 Little reaction
* Crude Yield ! Bonk, J. et. al., Syn. Comm., 2007, 2039
TCCA(1.2e o
BnMe3NéI (3.j)eq) C'\NJI\N/U
O}—Ph 1IN Na,CO, (1 eq) 9 o)\N/go
Ar/Het—S acetonitrile B Ar/Het_g_Cl Clll
0°C, 20 mins TCCA

% Tet. Lett 2011, 52, 820-823

* Developed buffered conditions to carry out required oxidation and also allow
toleration of acid labile groups — improved functional group compatibility:

>



One-pot oxidation/sulfonamide formation

* A second equivalent of base added at the start allows sulfonamides to be formed
in one pot, upon addition of appropriate amine. Good for unstable SO,CI!

TCCA (1.2 eq)

BnMe;NCI (3.4€q)
O}—Ph 1N Na,CO, (2 eq) C amine (1.2eq) i _Rr1
= | Ar/Het=S-CI B Ar/Het=—S=—N{
Ar/Het—S acetonitrile n no base needed G
0°C, 20 mins
i /\ T /7N |/ 1L /7 N /7 \ I /\
Ph—S—N 0  MeO S—N o ﬁ 0 ﬁ_N
I \__/ g \_/ N=— o =N g
61% 0% 74% 59%
NHBoc
o o)
1 / \ || / \ Il
BocHN S—N S—N ﬁ N
g \_/ g \—/ BocHN o
@Tet Lett 2011,
31% 85% 52, 820-823

0% . d@
g

 Overall 2 step protocol: aryl/heteroaryl halide to sulfonamide— chemical space expansion!



Accessing chemical space

(1)
Ideal medicinal chemistry
fragments

Sandwich!




Maraviroc

F
F /g;N\
N N I~ N CCRS inhibitor for HIV
u I j)%/ \( Discovered in Sandwich
* Difluorocyclohexane carboxylic acid —a simple molecule but...
F
F
o o
OH OH
clogP =1.77 clogP =0.86

* Improved metabolic profile and reduced lipophilicity
e Drastically reduced hERG liability due to dipole of gem difluoro

@2 Biorg. Med. Chem. Lett. 2006, 16, 4633-4637



Synthesis

Q F

F F
DAST
> +
0°C / DCM G2 Tet. Lett. (2005), 5005
% (1:1
85% (1:1) OEt 0% OoEt

O

O OEt

 Fluorination of ketone gave an inseparable mixture of difluoro and vinyl fluoride..

F F E F F
OsO, (cat)/NMO NaOH
+
Acetone / water Water
THF
@) OH

0
o) OEt o) OEt 74% 65%

 Separate difluoro-ester by silica chromatography
e Straightforward chemistry but accesses a nice fragment with better

physicochemical properties
e Others agree!

F/F Scifinder hits:\
o Before Maraviroc 2
Since Maraviroc 74
OH




Further reducing lipophilicity

O\(‘o ':>\\O\(O ——> o

OH HO
clogP = 1.77 clogP = 0.86 clogP =0.09

e Existing difluorocyclobutane synthesis impractical — toxic reagents/solvents
* Improved synthesis:

F
\ RuCl;, NalO, O\\ Et,NSF, b NaOH
F F

—_— —_— —_—
CN CN CN COH
G2 Synlett, (2005), 657

. R Scifinder hits:

Before Synlett 2

Since Synlett 34 @
®) ?
\_ J “




Synthetic innovation drives chemical space
expansion

e Hindered ether target
N
D 50 oY+ 5
Q <:| F30_®_0 CO,Me Fac_Q_OH + Br’ CO,Me
o —

* Ancient literature holds the key:

NaOH Q
Ar=OH + o -
CHCl, Ar=0O CO,H

© ClI~ Cl

Bargellini reaction (1906)

» Reaction generates dichlorocarbene, which adds across ketone

* Now comes the innovation; what else can we use in this reaction?? @



Different nucleophiles and ketones?

Original Bargellini reaction used phenols only.

w
Nz
Q

F,C V—oH

Br OH

SH

NH

0 0 O

MeO

®

O

w O=CZUU O w
(@]
(@]

o %

'\ ;
F3C—<__>—O CO,H

Boc

NaOH, CHCI, Br < >‘O COH

THF

45%

56%

71%

99%




“Perfect” medchem fragments.......

Boc 4 Boc
N N N
Br—<__\>—NH2 [“j N 46%
Br—¢ H—n CO,H
o) =/ H
Boc - Boc—"
N N
R 72%
il /N
o) NaOH, CHClI, __ /N COH
THF
Boc Boc
N
\(\,NHZ N
NN A 35%
I »™N"co.H
9] N~ H 2
\
Boc e EOC )

—_— N
é\ NH [“j
N
O

4 points of synthetic diversity!!




Compare and contrast

SciFinder Hits
o pKa (-2)

o cLogP (-1.6)
5 TPSA (+18)

5 MW (-10)

Dipole

Availability

Boc
N

©ggcozH

>>10,000
4.1
2.9

67

305

Aldrich

Boc

(LN CO,H

2.1
1.3

85

295

Now 4 suppliers! G@



Improved synthesis of a Carfentanil

INtermediate

Original synthesis

0
[:j — P Strecker, CH,l, 3 day

i. Aniline, NaOH, CHCl;, THF, 70%,
ii. Propionic anhydride, Et;N iii.
MeOH
G2 Tet. Lett. 2009, 2497

— N% CO,Me amide formation

Carfentanil

(Pfizery



Another great fragment

R1 e How many ‘hits’ in SciFinder for this substructure?
N

V e <10 - makes it novel design space
SO,NR,

e Polar, bifunctional, unusual vectors, pKa

e This would be the perfect intermediate — but has never

Boc
¢ been reported!
SO,C e Generally sulfonyl chloride synthesis requires harsh

conditions. New synthetic methodology solves the problem.

BOC BOC EOC

N AcSH N Cl,, EtOH
> - v
V Base Y NaOAc buffer )
SO,Cl G

OMs SAC




Innovation from the literature

* Oxetanes very much in vogue in medicinal chemistry recently
metabolically at risk

0 ~HQ
metabolic attack

Me, Me ﬂ o )}1""' __H
[ G- . | _ﬁ

nonpolar ‘

1.2 & 21A

As metabolic blocking groups... :
& gToup ...or as carbonyl isosteres

* Seminal paper from Carreira synthesised some very useful spirocyclic oxetanes:

Angew. Chem. Int. Ed. 2008, 47, 4512-4515 @




Oxetane diversity

 Great paper from Merck
* Amino oxetanes — modulated pKa, possible amide isostere?

0 o )
i I Q I
Q -5 e H.C—80 S
H,N 3 N N -
Jg : W< h/ nd Z/ Versatile
. > .
o Ti(OEt),, THF DMSO. 1 t. Intermediates!
60°C, 5h, (45%) \.O___J 2h, (83%) \.°
H
i n NS Cs,CO
')1A-,[mgBr’ cul i)PhSH, Et,N ')ﬂ\ Py Di/IZF 3
MeOH, tol
ii) HCI, MeOH i) HCI, MeOH ii) HCI, MeOH
v

v
R Ph
HZN HZXS/ HZXN/N\7
O o O

Org. Lett. 2010, 12, 1116-1119

Pfizerg



Conclusions

* Innovative synthesis is the cornerstone of chemical space exploration and
expansion

* New takes on ubiquitous reactions utilising more commonly available
substrates to increase substituent scope are clearly desirable.

* Population of chemical space with small expressions of polarity and
lipophilicity containing 1 or 2 points of diversity, is highly desirable but.......




Not if it’s a 9 step route.......

cl H,N )=NH Ph Ph
l)l\l PMPOH \_<_ NH,, MeOH \_<_ ELN.3HF
— ') —_—— —_— -
cl ci KotBu 130 C (71%) \_<_ \7<:
(41%) (77%) Q (69%) Q

OMe
OMe OMe

NaCNBH;, AcOH

\/ (74%)

o° O° Ph_-Ph
Y RuCl;, NalO, Y Y

N N 1. H,, Pd/C N
X ot T omow
F OH  (a7w) F OH 2. Boc,0 (62%) F%O
0 3. CAN, -10 C (74%) O\
OMe

JOC, 2009, 74, 2250-2253




Conclusions

* Innovative synthesis is the cornerstone of chemical space exploration and
expansion

* New takes on ubiquitous reactions utilising more commonly available
substrates to increase substituent scope are clearly desirable.

* Population of chemical space with small expressions of polarity and
lipophilicity containing 1 or 2 points of diversity, is highly desirable but.......

* Must be accessible in a relatively small number of steps

 Synthetic Innovation can come from anywhere. Communication and
collaboration between the pharmaceutical industry and academia is key.

Pfizer
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Backups




Goossen Mech

Combination of a decarboxylation with a Pd-catalyzed cross-coupling

co, [Cu]
R R’ R'
L,Pd, X
(o
o= ALl
R
L,Pd «— Pd°-precursor

N o0/ '
BNV

O In principle, only a catalytic amount of copper is required

O Ligand exchange between potassium carboxylate and copper halide
closes a second catalytic cycle



Origin of vinyl fluoride

i \
|
F
H
% ﬁ
@) OEt @) OEt @) OEt

0 HF R:NF,SO F
! XE 2

s




Thiobenzoate Oxidation mechanism

CLA, —»@ﬁ gt ~ L

CI CI




« It is believed that Cl, is generated in-situ, so Cl, is the actual oxidant.

O

o . .
CI\N)J\N/CI )\ Practical observation:
N“ °N i
A L+ 3BaMeNc ~ s, + sewen | T * Need to premix TCCA and R,NCI.
© 'Tll © o °NT "o * Solution goes green upon mixing.
C

TCCA



