The synthetic challenges of accessing design space

Nick Summerhill

Pfizer Global Research & Development
Sandwich, UK

nick.summerhill@pfizer.com

SCI exploring Chemical Space 23rd March 2011

Outline of Talk

- Introduction
- Accessing chemical space by evolving existing methodology.
- Expanding chemical space by innovative synthesis of ideal medicinal chemistry fragments
- Conclusion

Chemical space – the numbers

- ca 600-1000 drugable targets
- 2500 therapeutically relevant genes

- 10⁶³ possible stable structures with less than 30 non-hydrogen atoms (C, N, O, P, S, F, Cl and Br), with a molecular weight of less than 500 dalton
- 10²⁰⁻²⁴ possible structures from currently known synthetic methods.

winning the lottery 10⁷ to 1 chance

 10¹⁷ number of seconds since the Big Bang (15 billion years)

Chemical Space – A synthetic chemist's definition!

What our molecules really look like:

N CO₂H

HO Prizer BMCL, 2008, 1280

Pizer OPRD, 2008, 575

Pizer Org Lett, 2006, 1725

Accessing chemical space (I) Methodology evolution

1) Suzuki Coupling

- Improving the methodology of a Nobel prize winner??
- Our "bread and butter" for SP2-SP2 couplings in the pharma industry:

- Yet how much are we biasing/restricting our chemical space by starting with boronic acids?
- Commercially available in Scifinder:

• It's more than just the numbers......

Carboxylic Acid Vs. Boronic Acid: Chemical Space Comparison

Carboxylic acids open up more heterocyclic design space!

Expanded space.....

• Goossen decarboxylative coupling protocol enables carboxylic acid to be used as starting material

Chem. Eur. J . **2009**, 15, 9336-9349

o-, m-, p-substituted acids

Several examples of heterocyclic acids

Chem. Eur. J . 2010, 16, 3906-3909

2) Aromatic trifluoromethylation

- CF₃ group loved by medicinal chemists but its introduction used to be a "holy grail" for synthesis.
- Typically involved chloride exchange with fluoride under harsh conditions

Bull. Soc. Chim. Belg. 1892, 24, 309

- Fantastic progress made in academia over the last 3 years:
 - Amii 2008. First aromatic halide to CF₃ catalytic in copper:

Chem. Comm. 2009, 14, 1909-1911

Aromatic trifluoromethylation

• Buchwald 2010: Trifluoromethylation of aryl chlorides!

• Xiao 2011: excellent range of 5 and 6 membered heteroaromatic substrates

• Buchwald 2011: Oxidative trifluoromethylation of boronic acids at r.t.!

•Sulfonamide is another group loved in drug design but substituent scope is generally limited to commercial availability (or "synthesisability") of sulfonyl chlorides:

•Sulfonamide is another group loved in drug design but substituent scope is generally limited to commercial availability (or "synthesisability")of sulfonyl chlorides:

•Sulfonamide is another group loved in drug design but substituent scope is generally limited to commercial availability (or "synthesisability") of sulfonyl chlorides:

- X Organometallics air-sensitive, difficult to handle, low FG tolerance.
- X SO₂ gas- hazardous.

•Sulfonamide is another group loved in drug design but substituent scope is generally limited to commercial availability (or "synthesisability")of sulfonyl chlorides:

 Aryl/heteroaryl halide definitely a better starting point than sulphonyl chloride to maximise chemical space accessed by sulfonamide synthesis. Commercially available in Scifinder:

• Oxidation of thioacetates to sulfonyl chlorides well established......

- ...but their formation from aryl halides not well precedented.
- However formation of **thiobenzoates** from aryl iodides **is** well precedented....

Itoh, T. et. al., Tet. Lett., 2006, 6595

• So how about oxidation of thiobenzoates to sulphonyl chlorides???

Optimisation Studies

Chlorinating agent	Additives	рН	Result
TCCA (1 eq) ¹	BnMe ₃ NCl (3 eq), H ₂ O	2 to 0	90%
TCCA (1 eq)	BnMe ₃ NCl (3 eq), H ₂ O, NEt ₃ (1 eq)	9-11	No reaction
TCCA (1 eq)	BnMe ₃ NCl (3 eq), H ₂ O, Na ₂ CO ₃ (1 eq)	6 to 5	87%
TCCA (1 eq)	BnMe ₃ NCl (3 eq), H ₂ O, K ₂ CO ₃ (1 eq)	~4	100%*
TCCA (1 eq)	BnMe ₃ NCl (3 eq), H ₂ O, NaOAc (1 eq)	~1	100%*
HOCI (~3eq)	None	1-2	Little reaction
HOCl (~3eq)	NaOAc (2 eq)	8	Little reaction

^{*} Crude Yield

Tet. Lett 2011, 52, 820-823

• Developed buffered conditions to carry out required oxidation and also allow toleration of acid labile groups – improved functional group compatibility:

¹ Bonk, J. et. al., Syn. Comm., **2007**, 2039

One-pot oxidation/sulfonamide formation

• A second equivalent of base added at the start allows sulfonamides to be formed in one pot, upon addition of appropriate amine. Good for unstable SO₂CI!

• Overall 2 step protocol: aryl/heteroaryl halide to sulfonamide—chemical space expansion!

Accessing chemical space (II) Ideal medicinal chemistry fragments

Maraviroc

• Difluorocyclohexane carboxylic acid – a simple molecule but...

- Improved metabolic profile and reduced lipophilicity
- Drastically reduced hERG liability due to dipole of gem difluoro

Fizer Biorg. Med. Chem. Lett. **2006**, 16, 4633-4637

Synthesis

• Fluorination of ketone gave an inseparable mixture of difluoro and vinyl fluoride...

- Separate difluoro-ester by silica chromatography
- Straightforward chemistry but accesses a nice fragment with better physicochemical properties
- Others agree!

Further reducing lipophilicity

- Existing difluorocyclobutane synthesis impractical toxic reagents/solvents
- Improved synthesis:

Synthetic innovation drives chemical space expansion

Hindered ether target

• Ancient literature holds the key:

Ar-OH +
$$\bigcap_{O}$$
 \bigcap_{CHCl_3} \bigcap_{O} \bigcap_{Cl} \bigcap_{Cl} \bigcap_{CO_2H}

Bargellini reaction (1906)

- Reaction generates dichlorocarbene, which adds across ketone
- Now comes the innovation; what else can we use in this reaction??

Different nucleophiles and ketones?

Original Bargellini reaction used phenols only.

"Perfect" medchem fragments......

4 points of synthetic diversity!!

Compare and contrast......

	Boc N CO ₂ H	Boc N N CO ₂ H
SciFinder Hits	>>10,000	1
δ pKa (-2)	4.1	2.1
δ cLogP (-1.6)	2.9	1.3
δ TPSA (+18)	67	85
δ MWt (-10)	305	295
Dipole	7	X CONTRACTOR OF THE PARTY OF TH

Availability

Aldrich

Now 4 suppliers!

Improved synthesis of a Carfentanil intermediate

Original synthesis

Strecker, CH₃I, 3 day amide formation

$$\bigcup_{O}^{\mathsf{Boc}} \longrightarrow \bigcup_{H\mathsf{N} \subset \mathsf{O}_2\mathsf{H}}^{\mathsf{Boc}} \longrightarrow \bigcup_{\mathsf{N} \subset \mathsf{O}_2\mathsf{Me}}^{\mathsf{Boc}}$$

i. Aniline, NaOH, CHCl₃, THF, 70%, ii. Propionic anhydride, Et₃N iii. MeOH

Another great fragment

 $\overset{\mathsf{R1}}{\overset{\mathsf{N}}{\bigvee}}_{\mathsf{SO_2NR_2}}$

- How many 'hits' in SciFinder for this substructure?
- <10 makes it novel design space
- Polar, bifunctional, unusual vectors, pKa

- This would be the perfect intermediate but has never been reported!
- Generally sulfonyl chloride synthesis requires harsh conditions. New synthetic methodology solves the problem.

Innovation from the literature

Oxetanes very much in vogue in medicinal chemistry recently

As metabolic blocking groups...

...or as carbonyl isosteres

• Seminal paper from Carreira synthesised some very useful spirocyclic oxetanes:

$$O \nearrow N_R$$
 $O \nearrow N_R$

Oxetane diversity

- Great paper from Merck
- Amino oxetanes modulated pKa, possible amide isostere?

Org. Lett. 2010, 12, 1116-1119

Conclusions

- Innovative synthesis is the cornerstone of chemical space exploration and expansion
- New takes on ubiquitous reactions utilising more commonly available substrates to increase substituent scope are clearly desirable.
- Population of chemical space with small expressions of polarity and lipophilicity containing 1 or 2 points of diversity, is highly desirable but......

Not if it's a 9 step route......

JOC, 2009, **74**, 2250-2253

Conclusions

- Innovative synthesis is the cornerstone of chemical space exploration and expansion
- New takes on ubiquitous reactions utilising more commonly available substrates to increase substituent scope are clearly desirable.
- Population of chemical space with small expressions of polarity and lipophilicity containing 1 or 2 points of diversity, is highly desirable but......

- Must be accessible in a relatively small number of steps
- Synthetic Innovation can come from anywhere. Communication and collaboration between the pharmaceutical industry and academia is key.

Acknowledgements

Dafydd Owen

David Blakemore

Danny Ho

Lily Chan

Ken Butcher

Pete Wilson

Matt Selby

Jonathan Fray

Andrew Cronin

Nunzio Sciammetta

All other synthetic chemists at Sandwich

Backups

Goossen Mech

Combination of a decarboxylation with a Pd-catalyzed cross-coupling

$$CO_{2}$$

$$CO_{2}$$

$$CU]^{+}$$

$$R$$

$$L_{2}Pd$$

$$R$$

$$L_{2}Pd$$

$$R$$

$$L_{2}Pd$$

$$R$$

$$R'$$

$$R'$$

$$R'$$

$$R'$$

- In principle, only a catalytic amount of copper is required
- Ligand exchange between potassium carboxylate and copper halide closes a second catalytic cycle

Origin of vinyl fluoride

Thiobenzoate Oxidation mechanism

• It is believed that Cl_2 is generated in-situ, so Cl_2 is the actual oxidant.