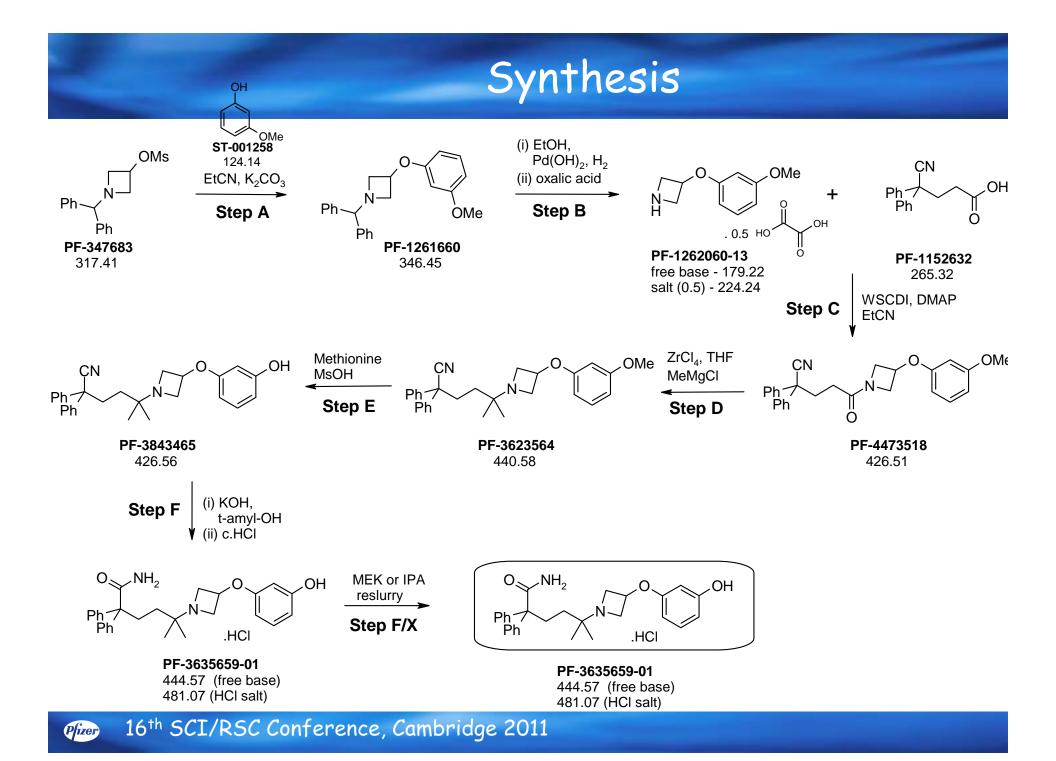


Discovery of PF-3635659 An Inhaled Once-daily M3 Antagonist for Asthma & COPD

David Price

Pfizer WWMC, Groton, USA

David.a.price@pfizer.com

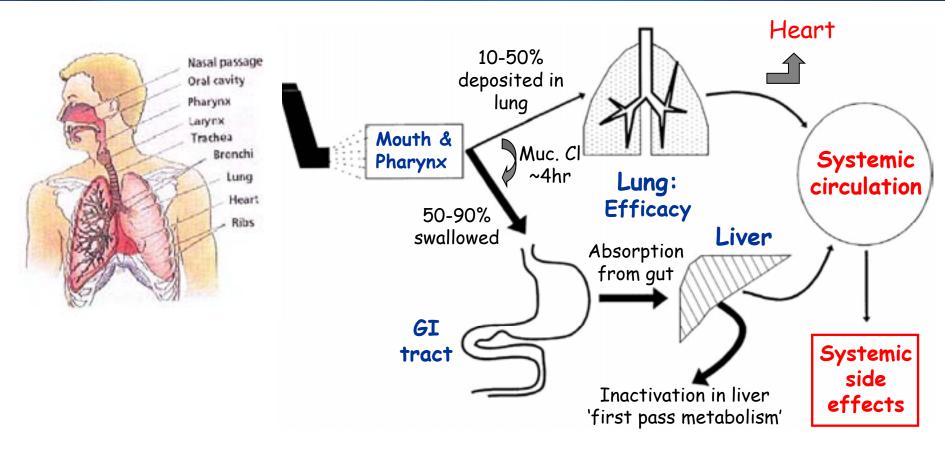


Allergy & Respiratory

Overview

Synthesis Asthma and COPD Inhalation by design Slow offset kinetics (PD) PK Safety Solid form Phase I People

Asthma & COPD


♦ <u>Asthma</u>:

- Chronic inflammatory disorder of the airways in response to allergen challenge, causing recurrent episodes of wheezing, breathlessness, chest tightness and coughing
- * Symptoms often result in decreased quality of life

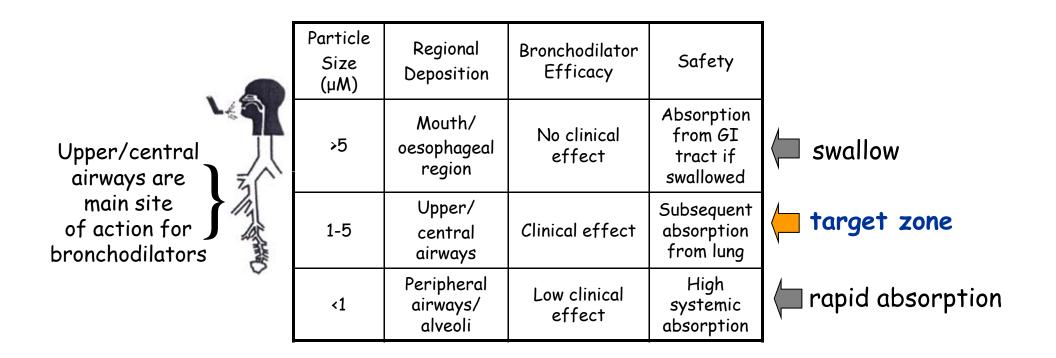
♦ <u>COPD</u>:

- $\boldsymbol{\ast}$ COPD is the fourth leading cause of death in the US
- Characterized by airflow limitation that is not fully reversible cigarette smoke is the biggest cause
- Symptoms are typically breathing-related (*e.g.* chronic cough, exertional dyspnoea & wheeze)
- Asthma & COPD affect millions of people worldwide with numbers continuing to increase (~300M for asthma alone)
- Global asthma/COPD market forecast: \$30 billion by 2015

Drug Delivery via Inhalation

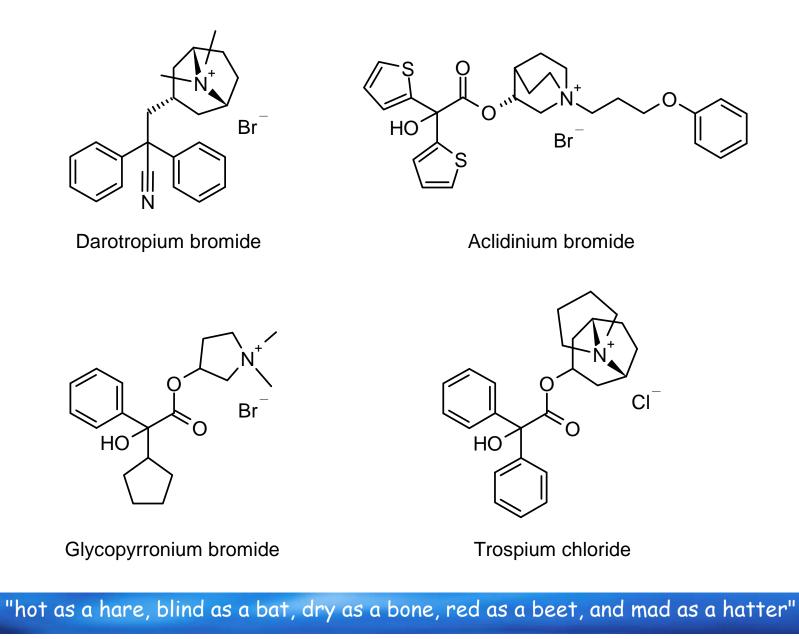
- Good inhaled agents require different design strategy to oral drugs
 'Inhalation by design' importance of efficacy & safety
- Drug generally delivered via dry-powder inhaler (DPI) or metereddose inhaler (MDI) - variety of devices used

Inhalation Devices



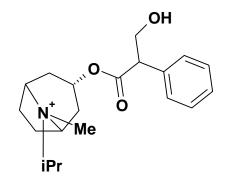
- Dry Powder Inhalers (DPI) highly preferred
- Stringent material properties required for DPI formulation
- As important as drug substance

'Inhalation by Design' - 5 Key Requirements


- Material properties
 - * Suitable for DPI formulation & delivery
- High level of potency
 - * Low doses required for DPI (<2mg)
- Lung solubility & absorption
 - Sufficient solubility so absorption > mucociliary clearance
- Lung pharmacodynamics
 - * Design strategy to achieve long duration of action (q.d.)
- Low systemic exposure
 - * Optimise ADME properties to maximise TI

Lung Deposition - Dry powder

 Inhaled particle size important (2-3µM ideal)¹⁰ for optimal efficacy, duration of action & therapeutic-index


External environment

Pizer

Table 1. Binding affinities and dissociation half-lives of tiotropium and ipratropium to select muscarinic receptor subtypes [5].

	Tiotropium		Ipratropium		
	K _D (nM)	$t_{y_2}(h)$	K _D (nM)	$t_{y_2}(h)$	
M ₁	0.041	14.6	0.183	0.110	
M ₂	0.021	3.6	0.195	0.035	
Мз	0.014	34.7	0.204	0.260	

 $K_{D}\!;$ Kinetically determined dissociation constant; $t_{y_{2}}$. Dissociation half-life.

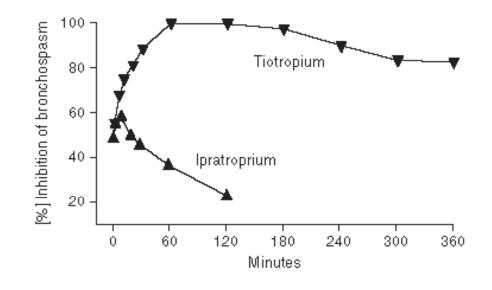
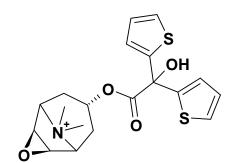
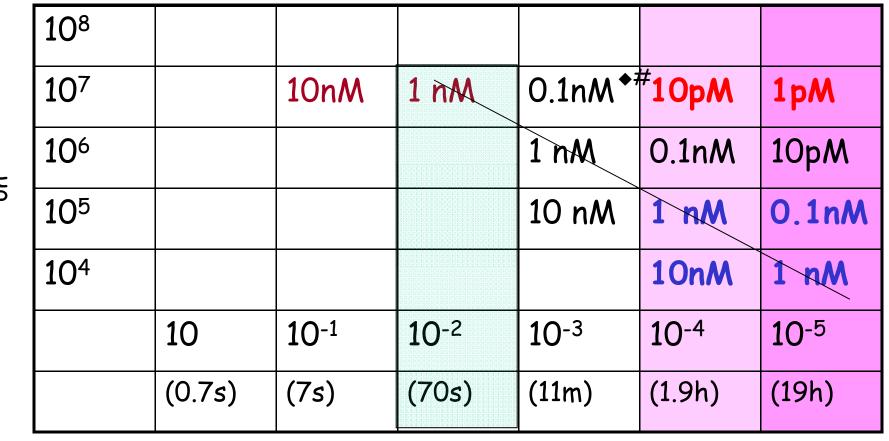




Figure 2. Time course of the protection against acetylcholineinduced bronchospasm by inhaled ipratropium bromide (\mathbf{v} , 1.0 mg/mL) or tiotropium (\mathbf{A} , 1.0 mg/mL) in dogs. N = 6 for

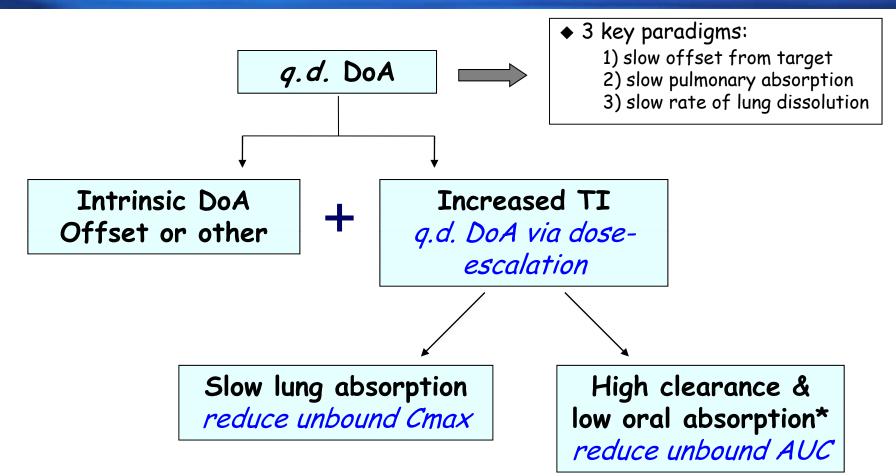
Balancing kon & Koff

ipratropium

*

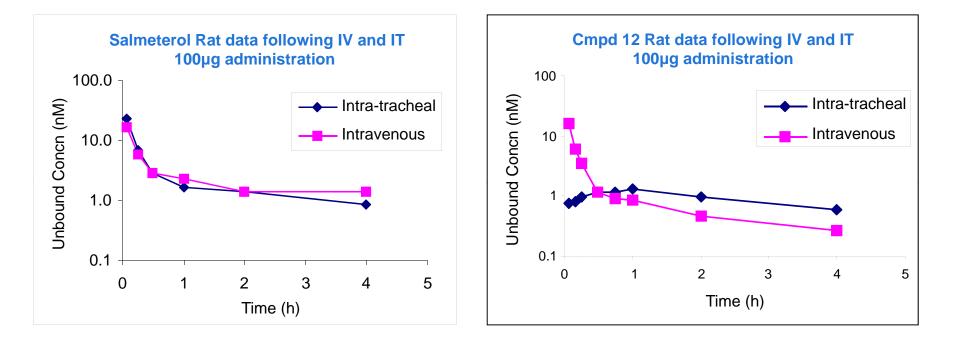
• $K_i = k_{off} / k_{on}$ 16th SCI/RSC Conference, Cambridge 2011 Pizer

 \mathbf{k}_{on}


*

tiotropium

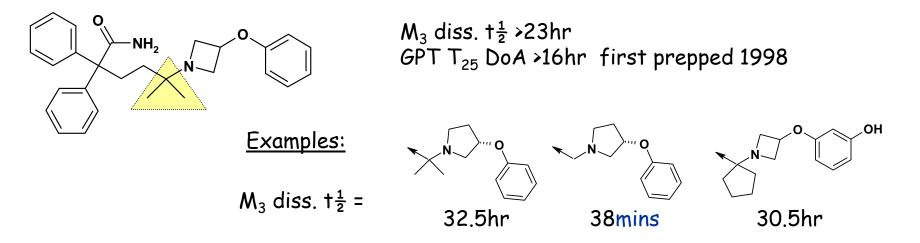
Tiotropium


- High local conc. key to driving association in lung & loading up receptors
- Low systemic Cmax & rapid clearance to very low conc. fails to allow significant occupancy
- \cdot 20µg tiotropium gives 4µg dose to lung
- · Dissolution in epithelial lung fluid (20mL) gives $2\mu M$ soln.
- 100,000 X higher than Ki (time to equilibrate < 3 mins)
 - local conc drives receptor occupancy
- Plasma Cmax 30pM (5 mins post dose) falling to trough of 4 pM
 - insufficient for occupancy in systemic compartment
 - projected 6% to 1% occupancy at steady state
- Offset profile helps drives once daily efficacy & lung focus to aid toleration

Strategy for q.d. DoA

* Salmeterol: ~30% of systemically mediated AEs occur *via* the <u>swallowed</u> fraction of an 'inhaled' 400µg dose¹

Delayed Lung Absorption: *i.t.* sol'n PK



◆ PF-610355 exhibits improved *i.t.* pharmacokinetics *vs.* salmeterol
 ☆ Delayed lung absorption (T_{max}= 0.5hr), ↓free Cmax (10-20x)

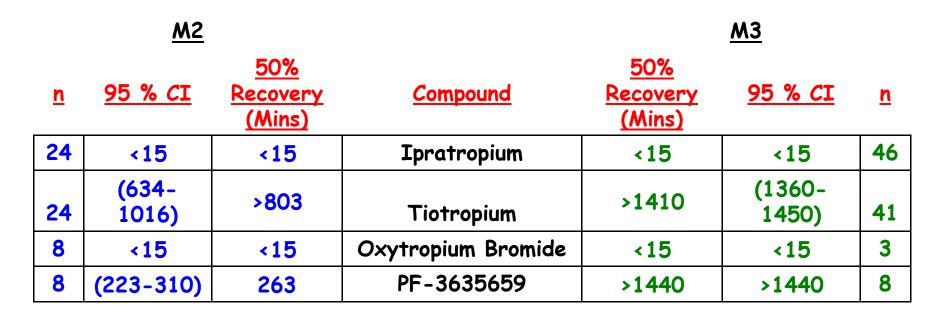
Potential for *DoA* and/or *TI* in vivo

Gem-diMe drives slow offset/DoA

- Gem-dimethyl key for slow offset/DoA
 - Removal has dramatic impact on diss. $t\frac{1}{2}$ and DoA in vitro
 - Diss. $t\frac{1}{2}$ = 49.5hr \Rightarrow K_{off} ~3.9x10⁻⁶ s⁻¹ : large ΔE for dissociation
 - $K_i = 0.128nM \Rightarrow K_{on} \sim 3 \times 10^4 M^{-1}s^{-1}$: <u>slow onset</u> due to significant reordering of antagonist/binding site - gem-dimethyl reduces conformational freedom and/or increases steric hindrance of protonated azetidine for key salt-bridge interaction
- Slow onset is observed experimentally and has screening implications......

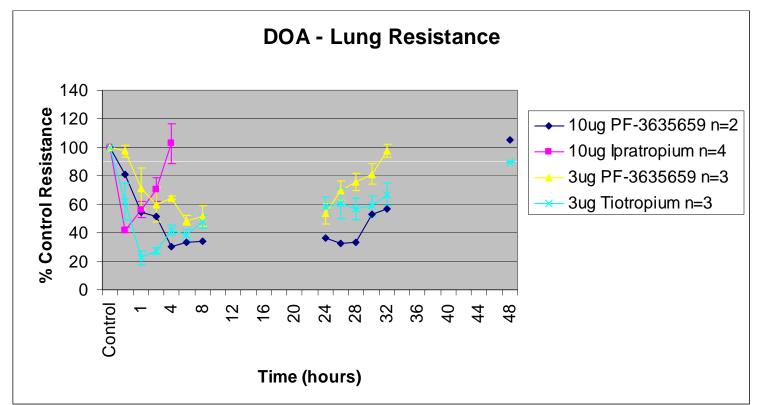
Exhaustive file mining from legacy projects key to success

Slow onset compounds extended assay


<u>Example</u>: pK_B determination in the human bronchial ring *in vitro* for PF-3635659 and tiotropium using increasing pre-incubation times

Compound	1h pre-incubation	2h pre-incubation	4h pre-incubation
	pK _B	pK _B	pK _B
Tiotropium	10.1	10.8	10.2
	(9.2,11.5)	(8.8,12.2)	(8.8,11.5)
	n=3	n=4	n=3
PF-3635659	7.8* (7.2,8.4) n=3	8.5, 8.7 n=2	9.6† (8.1,11.0) n=3

- PF-3635659 potency increases with increasing pre-incubation times
 - * Within 10x of tiotropium @ 4hrs, 100x @ 1hr standard pre-incubation
- In vitro screens were re-configured with extended pre-incubation times
 - * Binding/offset assay 2 \Rightarrow 24hr, GPT & human/dog bronchus 1 \Rightarrow 4hr
 - * Increased potency observed compound data more accurate for decision making
- Slow onset also seen in the conscious dog: ~4hrs vs. ~1hr for tiotropium
 - * Fast onset of action is not a pre-requisite for maintenance therapy of COPD

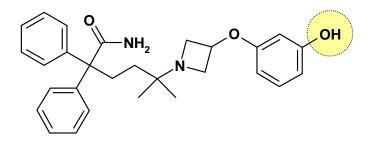

In vitro pharmacology: kinetics

- ♦ PF-3635659 shows comparable M₃ receptor offset to tiotropium
- Suggests potential for q.d. dosing

PF-3635659-01: Conscious dog DoA

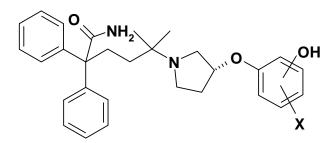
•Duration of action of a single *i.t.* administration of 3μ g or 10μ g PF-3635659 on methacholine induced bronchoconstriction in the conscious dog

- \cdot ID₅₀ dose (3µg) provides intrinsic 24hr DoA
- 10µg dose gives ^efficacy/DoA similar profile to 3µg dose of tiotropium
- Human Dose projection: 23-190µg q.d.


Oral bioavailability & absorption

- Key opportunity to [↑]TI of inhaled agents by minimising <u>oral</u> bioavailability (<5%)
 - * <u>Minimise</u> gut wall permeability & ensure high first pass extraction
- Factors influencing good oral absorption are well understood
 - * 'Rule of 5' MW <500, HBD/A \leq 5/10, clogP <5²
 - * Rot. bonds ≤ 10 , PSA ≤ 140 Å² (HB count ≤ 12)³
- Key design criteria to <u>minimise</u> oral absorption:
 - * Molecular properties consistent with non-'Ro5' compliance
 - \star Incorporate 2° amides for ^PSA & the limiting role of their hydration on membrane permeation^3
 - * Screen for reduced permeability *in vitro* using Caco-2 cell monolayers

Glucuronidation and low DDI risk


HLM gluc'n = 221µl/min/mg with *meta*-phenol

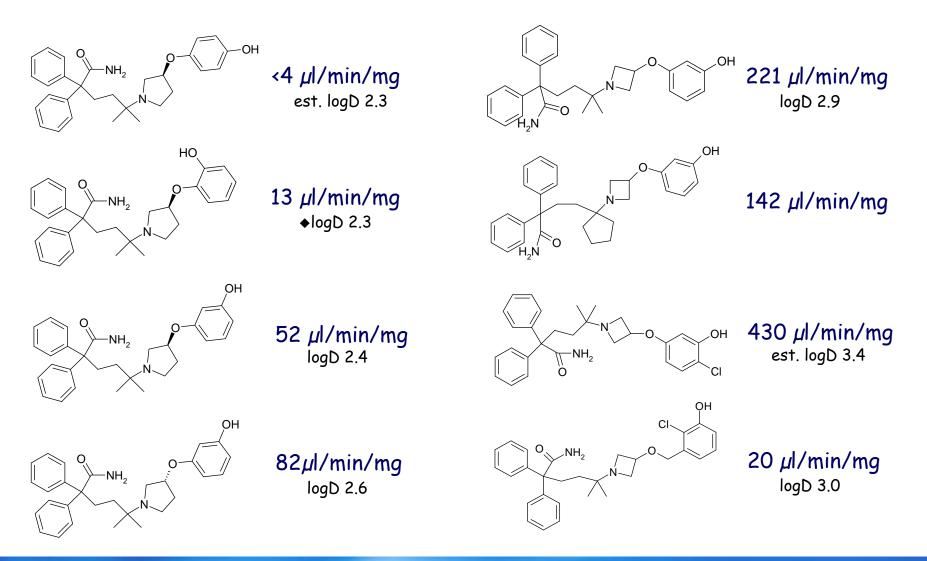
 Human Cl_{gluc} pred'n ~11ml/min/kg (50%LBF)
 Human Cl_{P450} pred'n ~13ml/min/kg

 Gluc'n provides ↑Cl & mitigates DDI
 Phenol also gives P-gp efflux - ↓ oral absp'n

 MDCK: AB=7, BA=64

SAR from other examples:

	X = H				<i>m</i> -OH		
	<i>o</i> -OH	<i>m</i> -OH	<i>р</i> -ОН	X=2-F	X=4-CI	X=5-CN	
Gluc Cl _{int}	13	52	<4	92	146	202	
(unite - ul/min/ma)							


(units = μ l/min/mg)

- SAR suggests gluc'n Cl_{int} influenced significantly by acidity of phenol
- Structural impact also important: Ph \rightarrow Bn \downarrow Cl_{int}, pyrrolidine \rightarrow azetidine \uparrow Cl_{int}
- SAR suggests that within a series gluc'n can be tuned up or down

Glucuronidation SAR: M₃ antagonists

Pyrrolidines:

Azetidines:

Pfizer 16th SCI/RSC Conference, Cambridge 2011

Pharmacokinetics

Compound		T	a ultra DV		Rat in vivo PK							
			n vitro PK			<i>i.v</i> .			<i>p.o.</i>			
	Gluc. Cl _{int}		Caco-2 P _{app} x10 ⁻⁶ cm/s		Vd	Cl _T	t½	Rat ppb	F			
	(uL/min)/ mg	(uL/min)/ mg	A-B	B-A	L/kg	ml/min/kg	h	%	%			
	221	>282	7	64	8.4	134	0.9	94	<5			

• In vitro PK:

- * Rapid CYP3A4 metabolism & glucuronidation, P-gp transporter mediated efflux
- In vivo PK:
 - * High Cl_u , short $T\frac{1}{2}$, low oral bioavailability (<5%)
- Major metabolites:
 - * Phenol glucuronide, oxidative species
- Prediction to human:
 - * Low oral bioavailability *cf* salmeterol (~30% AEs *via* swallowed fraction)¹
 - * High clearance ~ LBF (phaseI/II)

Ideal PK profile for an inhaled agent

Systemic exposure prediction safety

- Projected human dose: 23-190µg
- Projected human systemic exposure for PF-3635659
 - ✤ Oral rat PK: free C_{max} 3-23pM
 - ✤ Oral dog PK: free C_{max} 3-720pM
- ◆ 240-fold variability in predictions due to dose range & species diff

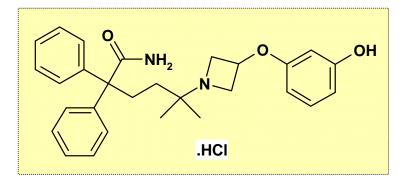
However, even with 'worst case' numbers excellent TI

Drug Safety Profile

- In vitro safety studies no significant findings
 - CEREP panel >100nM
 - ☆ hERG patch clamp IC₅₀ >1µM
 - * Genetic Toxicity
- In vivo toxicology studies no significant findings
- Rabbit lung cough model measures afferent traffic from rapidly adapting sensory nerves (Aδ)
 - * Enables early assessment of key attrition risk for inhaled agents

Pre-clinical safety profile suggests will be well tolerated in humans at all clinically relevant inhaled doses

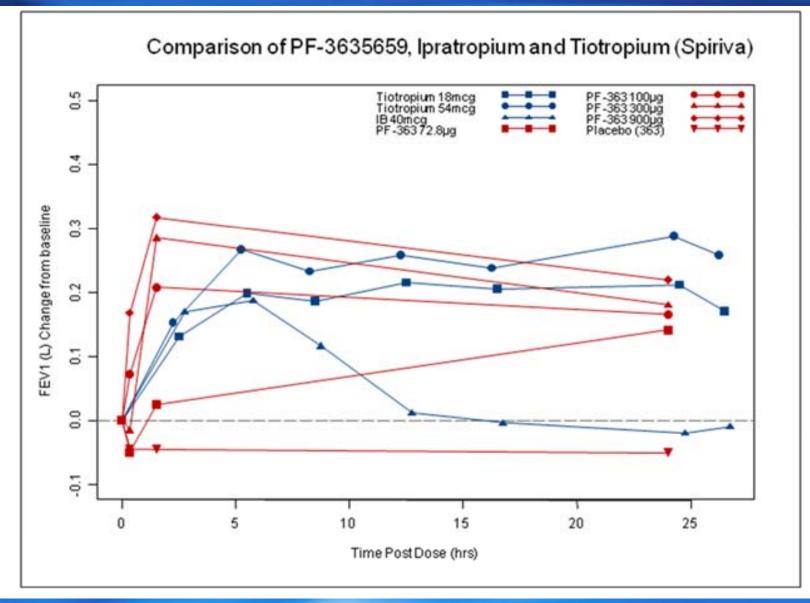
Solid Form Challenges & Strategy


- Significant solid form challenge with inhaled molecules
 - * Often conformationally flexible & lipophilic
 - * Limited options re: salt forms for inhalation
- <u>Objective</u>: identify series with higher intrinsic crystallinity to simplify solid form identification

Key design criteria:

- * Retain key structural features responsible for activity (SAR)
- Modify template with polar groups to increase potential H-bonding
 & salt bridge interactions
 - *e.g.* carboxamide present in lead
- Fit-for-purpose DPI compatible form
 - * Crystalline HCl salt, mp=223°C, anhydrous, non-hygroscopic
 - * Good chemical & physical stability +/- lactose

 - * Polymorph/hydrate screening completed with no issues


PF-3635659-01

- $M_3 Ki βLac = 0.201nM$ $M_3 Ki bind = 0.128nM$ $M_2 Ki bind = 0.138nM$ $M_1 Ki bind = 0.088nM$ $M_3 diss. <math>t\frac{1}{2} = >23hrs$ $GPT T_{25} >16hrs$ MW = 444.24logD = 2.9, clogP = 4.55HLM >337µl/min/mgGluc HLM = 221µl/min/mgMDCK: AB=7, BA=64
- Potent M₃ receptor antagonist with slow offset kinetics similar to tiotropium (tiotropium is the only marketed *q.d.* inhaled M₃ antagonist)
- Superior PK profile to tiotropium high confidence in high clearance, multiple routes of metabolism (P450 & gluc'n) and low DDI risk
 - * Human PK pred'n (rat): $Vd_{ss} = 5.4L/kg$, $Cl_T > LBF$, $t\frac{1}{2} = 5hr$, PPB >95%, $\downarrow \downarrow F\%$
- Predicted q.d. profile with inhaled dose of 23-190µg conscious dog
- Pharmaceutical properties consistent with DPI formulation

Profile justifies progression to man

PF-3635659: Phase I data

What I hope I have said...

Potency is more than just a number

Product concept includes device

Preclinical dog model was essential

If you have a compound file use it well

Solid form is rarely given the respect it deserves

Thank you for your questions

ARD	BTB	CRD
Wiebke Bahker	Steve Chappell	Barry Dillon
Marc Barber	Rebecca Fish	David Éntwistle
Ed Hammersley	Tracy Hall	IDCoE
Biology	Sidath Katugampola	Helen Barker
John Adcock	Carolyn Napier	Jane Burrows
Karl Campany	Linda Sutcliffe	Craig Fulton
Nick Clarke	David Tattersall	Ed Guillabert
Michele Coghlan	Chemistry	OPCoE
Tim Davies	Katie Bainbridge	Neil Feeder
Steve Evans	Mark Bunnage	Patents
Andrew Gray	Trish Costello	Thomas Pringot
Ian Machin	David Cox	PDM
Stuart Marshall	Paul Glossop	Balaji Agoram
Sheena Patel	Ben Greener	Ranjit Atwal
Christelle Perros-Huguet	Tim Hobson	Philip Dalton
Anne Phelan	Kim James	Maurice Dickens
James Philip	Charlotte Lane	David Fairman
Jo Ann Rhodes	Simon Mantell	Anthony Harrison
Louise Sladen	Louise Marples	Martin Howard
Tim Stroud	Don Middleton	Jummai Inuwa
Emilio Stuart	David Price	Russell Jones
Mike Trevethick	Dannielle Roberts	Christine Tyman
Cameron Ward	Ross Strang	Kuresh Youdim
Jessica Watson	Christine Watson	DSRD
Anne Wilson	Clinical/Development	Pascal Berthe
Karen Wright	Mike Bartley	Fiona Spence
Market Assessment	Dzelal Serdarevic	Mick Sutton
Gordon Findlay	Jonathan Ward	Gareth Waldron
Pizer	Nick Clarke	