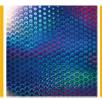
## **WORKED EXAMPLE**


# Therapeutic Gut Hormone Research Imperial College London



















Professor Stephen Bloom and team at Hammersmith Campus in West London

## What is required for drug discovery in Academia?

Knowledge of drug discovery

Scientific opportunity

Team resource (money)

University mechanism

## **Knowledge of Drug Discovery**

Physician in AHSC

Extensive consultancy for industry

Work with small biotech

Member of MHRA, NIBSC etc

## **Scientific Opportunity**

Worked with human systems and basic science

Trained as peptide chemist

Nearly 40 years in research

Large team

Aware of gaps in therapeutics

### **Team Resource**

My research team is 20 scientists

Built up financial reserves (spent £15 million)

Skill with molecular biology, receptors, animal physiology, peptide chemistry, assays, human infusions

Management experience.

## **University Mechanism**

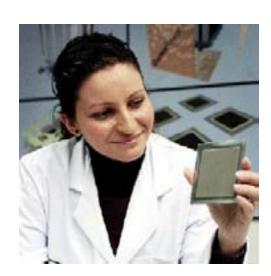
Imperial a technical university

History of consultancy and working with industry

Innovations considerable experience

Own Venture Capital

### **An enterprise culture**


## SLIDE TAKEN FROM THE OFFICIAL PROMOTIONAL PRESENTATION FOR IMPERIAL COLLEGE

- 89 Established equity holdings in spin-out companies
- 157 Commercial agreements under management
- **150+** Licence agreements

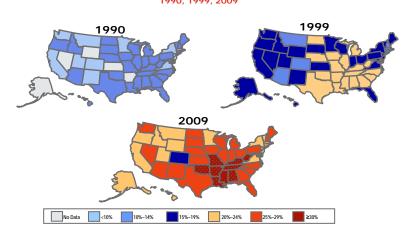


#### **Example spin-out company - Thiakis**

- » Obesity drug company founded by Steve Bloom & John Burt
- » Sold to US-based Wyeth Pharmaceuticals in Dec 08 for up to £100M payable to all shareholders
- » A significant proportion of this income will flow back to College under the revenue share agreement



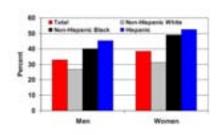
### **The Problem**


Obesity, and its main complication, diabetes, is very common and increasing at an accelerating rate.

Over 20% of UK adults are obese according to the WHO criterion (BMI ≥30 kg/m²) resulting in an estimate 800 premature UK deaths per week.

Obesity directly causes 95% of diabetes.

The International Diabetes Federation estimates about 285 million people worldwide had diabetes in 2010 and as many as 438 million could have the condition by 2030.


#### Obesity Trends Among U.S. Adults



# By 2050 1 in 3 citizens born in USA will be diabetic

**Centers for Disease Control and Prevention** 

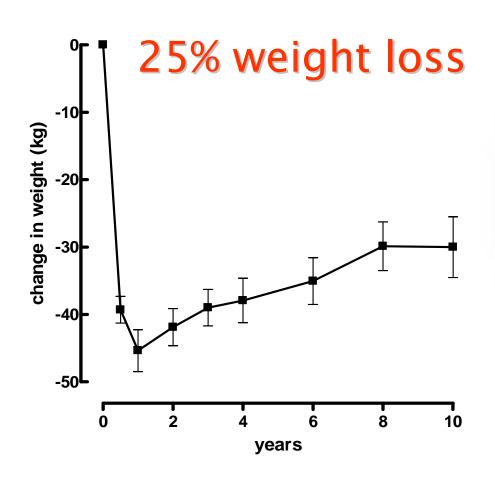
Estimated lifetime risk of developing diabetes for individuals born in the United States in 2000



Narapan et al., JAMA, 2003

## **Abject Therapeutic Failure**

### **Current & Coming Anti-obesity Agents**


| Agent                             | Action                               | Company               | Status                                   | Comment                                              |
|-----------------------------------|--------------------------------------|-----------------------|------------------------------------------|------------------------------------------------------|
| Orlistat                          | Lipase inhibition                    | Roche                 | Marketed<br>for obesity                  | Safe, poor efficacy, significant<br>side effects     |
| Exenatide                         | GLP1 mimetic                         | Lifty:Amylin          | Marketed diabetes                        | Injection, moderate to good efficacy, safe, nausea   |
| Liraglutide                       | GLP1 mimetic                         | Novo Nordisk          | Marketed diabetes                        | Nausea, hypoglycaemia, fairly effective              |
| Pramintide                        | Arrylin agonist                      | Amylin                | Marketed diabetes                        | Poor efficacy, injection                             |
| Phent Vine                        | Adrenergic                           | Generic               | Marketed initial<br>obesity therapy only | Only three months, limited efficacy, CVS concerns    |
| Sibuti (ine                       | Amine uptake inhibition              | Abbott                | No longer marketed                       | Poor efficacy, may have risks                        |
| Rimo                              | CB1 partial antagonist               | Sanofi Aventis        | No longer marketed                       | Moderate efficacy, some side effects<br>(depression) |
| Cet                               | Lipase inhibition                    | Alizyme               | PhaseIII                                 | Safe, poor efficacy, side effects                    |
| Question (Phentermine Topiramate) | Adrenergic + Amine                   | Vivus                 | Phase III FDA                            | Effective (15% wt loss), possible toxicity           |
| Lorcarin                          | SHT 2c agonist                       | Arena                 | Phase IIIFDA                             | Moderate efficacy (8% wt loss), headache             |
| (Bupropion Valtrexone)            | Opioid antag + Amine<br>uptake inhib | Orexigen              | Phase III FDA                            | Effective (10% wt loss), safety unclear              |
| Metreleptin + Pramiintide         | Leptin + Amylin agonists             | Amytin                | Phase II                                 | Injection, nausea, effectiveness in obese?           |
| Intranesal PYY3-36                | Gut hormone                          | Nastech               | Phasell                                  | Nasal, nausea, uncertain efficacy                    |
| Bupropion + Zonisamide            | Unclear                              | Orexigen              | Phasell                                  | Effective, toxicity                                  |
| Oleyi Estrone                     | Unclear                              | Manhattan             | Phasell                                  | Unclear                                              |
| Y5 antag                          | Inhib NPY Y5 R                       | Shionogi              | Phase II                                 | Poor efficacy                                        |
| Tesofensine                       | Unclear                              | Neurosearch           | Phase II                                 | Unclear                                              |
| OAP 189                           | Oxyntomodulin agonist                | Pfizer                | Phasel                                   | Injection, Chronic effect on wt unclear              |
| Glucagon/GLP1 agonist             | Gluc/GLP1 agonist                    |                       | Phasel                                   | Injection, Chronic effect on CHO tolerance unclear   |
| CB1 antagonists                   | CB1 antag                            | Vernalis,Merck,Pfizer | Various                                  | Reasonable efficacy, depression, nausea etc          |


Orlistat is the only agent currently on the market for obesity and only 1% of subjects continue beyond a year due to significant side effects and poor efficacy.

Life long therapy requires excellent safety.

Past 25 years 123 products, only one now marketed for obesity.

### What does "cure" obesity?





Roux-en-Y gastric bypass

adapted from: Sjöström et al, New Engl J Med 2004; 351: 2683-93

### Bariatric Surgery - excellent long term outcome

# **Bariatric Surgery** only successful therapy

Sjostrom et al, Sweden, NEJM 2007 Prospective controlled study, 4000 subjects Gastric Bypass group 10 year wt loss 25%

Adams et al, USA, NEJM 2007 Retrospective cohort study Gastric Bypass, 7 years, 15000 subjects

# Myocardial Infarct & **Cancer rates halved**

Expensive. significant death rate, 50% morbidity and can't be adjusted.

Works by sending satiety gut hormone signals fooling the brain that the gut is full.

Chronic elevation of satiety gut hormones associated with improved life expectation!

## **Current Therapeutic Team Work**

#### letters to nature

- Sinon, J. H. M. *et al.* The regulation of primate intramodeficiency virus infectivity by Vel is cell species restricted: a rule for Vel is determining virus bost range and cross-species transmission. BMO J. E. 1783–1787 (1999). Strebol, K. *et al.* The HIV "A" (*not*) gene product is essential for virus infectivity, Nature X8, 728–730.
- von Schweder, U., Song, L. Alken, C. & Tongo, D. vef is crucial for human immunodeficiency virus

- cellular anti-HIV-1 phenotype. Nature Med. 4, 1397-1400 (1998). Foley, G. E. et al. Loss of acoplaric properties in vitro. II. Observations on KB sublines. Caster Res. 25,
- 11. Hessaine, G. et al. The tyrosine kinase Hck is an inhibitor of HIV-1 replication counteracted by the viral vif protein, J. Bud. Chem. 276, 16885-16893 (2001).
- Camur, D. & Tross, D. Characterization of human issummodeficiency virus type 1 Vif particle incorporation. J. Virol. 70, 6106–6111 (1996).
   Fouchier, R. A. M., Simon, J. R. M., Jeffs, A. S. & Malim, M. H. Human immunodeficiency virus type
- I Vif does not influence expression or virion incorporation of gap-, pol-, and em-encoded proteins. I Virol 70, 8263-8269 (1996).
- 14. Liu, H. et al. The Viferotein of human and similar immunodeficiency virtues is nackaged into virtues.
- Liu, K. et al. The Vil profits on Human and causin interance-tricinent yearness is peckagin rate records
  and amoutiest with viral core structures. J. Virol. 60, 7855-7888 (1995).
   Teng, B., Sarant, C. E. & Devideos, N. C. Melocular decising of an epolepoprotein B measurager RNA
  editing protein. Science 26, 1816-1819 (1993).
   Median, P. et al. Portains upongained phenololin. I shares structural but not functional similarity to
  fine Median. P. et al. Portains upon gained phenololin.
- the mENA-editing protein spoke: 1. J. Invast. Dermatol. 113, 162–169 (1999).

  17. Shattachaya, S., Navarataam, N., Morrison, I. R., Scatt, I. & Dylor, W. R. Cytosiae nucleoside/
- contractions in convergence, the softence is a Section of the Section of Sec
- 19. Smith, A. A., Carlow, D. C., Wolfenden, R. & Short, S. A. Mutations effecting transition star
- issummodeficiency virus type I Vif with RNA and its role in reverse transcription. J. Virol. 74,
- II. Bhan, M. A. et al. Human immunodeficiency virus type I Vif protein is packaged into the
- a rando, p. 1- reterribute, p. 10. orderdena, U. 10. orderdena,
- steps. J. Virol. 69, 2068–2074 (1995). 4. Simon, J. H. M. & Malim, M. H. The human immunod efficiency virus type I V of protein modulates the postpenetration stability of viral nucleoprotein complexes. J. Virol. 70, 5297-5305 (1996).
- Sova, P. & Weldy, D. J. Efficiency of viral DNA synthesis during infection of permissive and acopermissive cells with vg-negative human immunodeficiency virus type 1, J. Virol. 67, 6322–6326.
- 26. Pryciak, P. M. & Varmus, H. E. Po-1 restriction and its effects on murine leakemia virus integration in vivo and in vitro. J. Virol. 66, 5959-5966 (1992).
- Towers, G. et al. A conserved mechanism of retrovirus restriction in mammals. Froc. Natl Acad. Sci.
- D. Fouchier, R. A. M. Meyer, R. E. Sixona, I. H. M., Facher, U. & Mallan, M. H. HIV-1 infection of non-dividing cells evidence that the animo-terminal besic region of the viral anerix protein is important for Gag processing but not for post-entry nuclear import. EMBO J. 16, 4531–4559 (1997).
- Pear, W. S. et al. Efficient and rapid induction of a chronic myelogenous leukemin-like myeloproliferative disease in mice receiving P210 ber/abl-transduced bone macrow. Bood 92.

supplementary Information accompanies the paper on Nature's website

We thank D. Gabunda for the CEM cells. This work was supported by Research Grants from the National Institutes of Health (M.H.M. and A.M.S.), the National Science Foundation (N.C.G.) and the UK Medical Research Council (M.H.M.), M.H.M. is an Eizabeth Glaser Scientist supported by the Eizabeth Glaser Pediatric AIDS Foundation

#### Competing interests statement

The authors declare that they have no competing financial interest

Correspondence and requests for materials should be addressed to M.H.M.

#### ...... Gut hormone PYY<sub>3-36</sub> physiologically inhibits food intake

Rachel L. Batterham\*†, Michael A. Cowley†\$\$, Caroline J. Small\*, Herbert Herzog||, Mark A. Cohen\*, Catherine L. Dakin\*, Alison M. Wren\*, Audrey E. Brynes\*, Malcolm J. Lows, Mohammad A. Ghatei\*, Roger D. Cone & Stephen R. Bloom

\* Imperial College Faculty of Medicine at Hammersmith Campus, Du Cane Road

‡ Oregon National Primate Research Centre, Oregon Health and Sciences University, 505 NW 185th, Beaverton, Oregon 97006, USA & The Vollum Institute, Orecon Health and Sciences University, 3181 SW Sam

lackson Park Road, Portland, Oregon 97201, USA || Neurobiology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia

† These authors contributed equally to this work

Food intake is regulated by the hypothalamus, including the melanocortin and neuropeptide Y (NPY) systems in the arcuate nucleus1. The NPY Y2 receptor (Y2R), a putative inhibitory presynaptic receptor, is highly expressed on NPY neurons3 in the arcuate nucleus, which is accessible to peripheral hormones Peptide YY<sub>3-36</sub> (PYY<sub>3-36</sub>), a Y2R agonist<sup>4</sup>, is released from the gastrointestinal tract postprandially in proportion to the calorie content of a meal<sup>5-7</sup>. Here we show that peripheral injection of PYY<sub>3-36</sub> in rats inhibits food intake and reduces weight gain. PYY3.36 also inhibits food intake in mice but not in Y2r-null mice, which suggests that the anorectic effect requires the Y2R. Peripheral administration of PYY<sub>3-36</sub> increases c-Fos immunoreac tivity in the arcuate nucleus and decreases hypothalamic Npv messenger RNA. Intra-arcuate injection of PYY3-36 inhibits food intake. PYY<sub>3-36</sub> also inhibits electrical activity of NPY nerve terminals, thus activating adjacent pro-opiomelanocortin (POMC) neurons8. In humans, infusion of normal postprandial concentrations of PYY<sub>3-36</sub> significantly decreases appetite and reduces food intake by 33% over 24h. Thus, postprandial elevation of PYY<sub>3-36</sub> may act through the arcuate nucleus Y2R to inhibit feeding in a gut-hypothalamic pathway.

The orexigenic NPY and the anorectic alpha melanocyte stimulating hormone (α-MSH) systems of the hypothalamic arcu-ate nucleus are involved in the central regulation of appetite<sup>t</sup> However, the potential mechanisms that signal meal ingestion directly to these hypothalamic-feeding circuits are unclear PYY<sub>3-36</sub> is a gut-derived hormone that is released postprandially in proportion to the calories ingested3. We therefore investigated the effects of peripheral administration of PYY<sub>3-36</sub> on feeding.

An intraperitoneal (i.p.) injection of PYY3.36 to freely feeding rats before the onset of the dark phase significantly decreased subsequent food intake (Fig. 1a). A similar inhibition of feeding was seen after i.p. injection in rats fasted for 24 h (Supplementary Information Fig. 1). A time course of the plasma PYY 5.56 concern trations after i.p. injection of PYY3.36 showed a peak at 15 min after injection, which was within the normal postprandial range (peak PYY<sub>3-36</sub> 15 min after i.p. injection of 0.3 µg per 100 g (body weight) 99.3 ± 10.4 pmol 1<sup>-1</sup>; peak postprandial PYY<sub>3-36</sub>, 112.1 ± 7.8  $pmol 1^{-1}$ ; n = 8-10 per group), suggesting that physiological concentrations of PYY3-36 inhibit feeding. PYY3-36 did not affect gastric emptying (percentage of food ingested remaining in the stomach a 3 h (ref. 9):  $PYY_{3-36}$ , 36 ± 1.9%; saline, 37.4 ± 1.0%; n = 12) PYY<sub>3-36</sub> that was administered i.p. twice daily for 7 d reduced cumulative food intake (7-d cumulative food intake: PYY3-36  $187.6 \pm 2.7$  g; saline,  $206.8 \pm 2.3$  g; n = 8 per group, P < 0.0001) and decreased body weight gain (PYY<sub>5-36</sub>, 48.2 ± 1.3 g; saline,  $58.7 \pm 1.9 \,\text{g}$ ;  $n = 8 \,\text{per group}$ , P < 0.002; Fig. 1b).

We discovered the satiety action of these gut hormones.

#### A role for glucagon-like peptide-1 in the central regulation of feeding

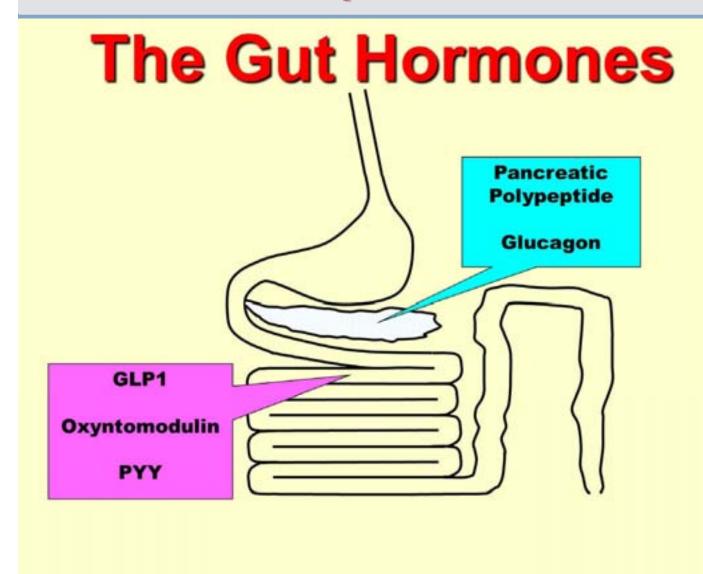
M. D. Turton, D. O'Shea, I. Gunn, S. A. Beak, C. M. B. Edwards, K. Meeran, S. J. Choi, G. M. Taylor, M. M. Heath, P. D. Lambert, J. P. H. Wilding, D. M. Smith, M. A. Ghatel, J. Herbert' & S. R. Bloom!

Endocrine Unit, Department of Medicine, Royal Postgraduate Medical School, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK. Department of Anatomy, University of Combridge, Downing Street, Cambridge CB2 3DY, UK

Titt sequence of glucagon-like peptide-1 (7-36) amide (GLP-1) is completely conserved in all mammalian species studied, implying that it plays a critical physiological role'. We have shown that GLP-1 and its specific receptors are present in the hypothalamus13. No physiological role for central GLP-1 has been established. We report here that intracerebroventricular (ICV) GLP-I powerfully inhibits feeding in fasted rats. ICV injection of the specific GLP-1-receptor antagonist, exendin (9-39)\*, blocked the inhibitory effect of GLP-1 on food intake, Exendin (9-39) alone had no influence on fast-induced feeding but more than

To whom communitative should be addressed

doubled food intake in satiated rats, and augmented the feeding response to the appetite stimulant, neuropeptide Y. Induction of c-for is a marker of neuronal activation'. Following ICV GLP-1 injection, c-for appeared exclusively in the paraventricular nucleus of the hypothalamus and central nucleus of the amygdala, and this was inhibited by prior administration of exendin (9-39). Both of these regions of the brain are of primary importance in the regulation of feeding\*. These findings suggest that central GLP-1 is a new physiological mediator of satiety.


We report that ICV administration of GLP-1 reduces food intake in fasted rats, with greater effect at higher doses (Fig. 1b). ICV injection of GLP-1 in rats at the beginning of the dark (feeding) phase also results in a profound decrease in feeding (Fig. 1a). When administered intraperitoneally up to a dose of 500 µg, GLP-1 did not affect early dark-phase feeding (data not shown), suggesting that the action of GLP-1 on food intake is through central rather than peripheral mechanisms. A reduction in locomotor activity is a well defined part of the satiety sequence and follows nutrient ingestion'. In a subgroup of the animals given ICV GLP-1 at the beginning of the dark phase, locomotor activity was monitored by the frequency of line-crossing. A significant reduction in activity was seen after ICV administration of GLP-1 (10 µg;  $41 \pm 7\%$  of control activity, P < 0.05: 100 µg;  $32 \pm 9\%$ , P < 0.01, n = 8 per group) compared to controls. Following ingestion of a palatable meal, the reduction in activity was similar to that observed following ICV injection of GLP-1 (10 µg) (palatable meal;  $54 \pm 19\%$  of control activity, P < 0.05, n = 6). Although not assessed formally, the behaviour of the GLP-1treated animals could not be distinguished, by observation, from those fed a palatable meal". Fragments of GLP-1 are inactive peripherally. To establish the specificity of GLP-1 on feeding,

NATURE - VOL 379 - 4 JANUARY 1996

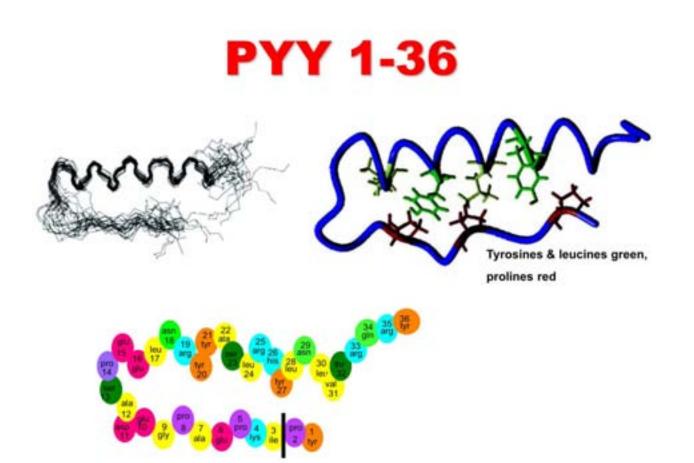
12

© 2002 Nature Publishing Group

## **Current Therapeutic Team Work**



We work on five hormones to mimic safe physiological satiety.


### **Current Therapeutic Team Work**

### **SATIETY PEPTIDE STATUS**

Oxyntomodulin analogue being developed by Pfizer (Phase 1/2). Pancreatic polypeptide analogue (Phase 1/2) ready to licence.

PYY funded through phase I in man, in laboratory. GLP1 funded in discovery, in laboratory. Glucagon funded in discovery, in laboratory.

### **Current Therapeutic Team Work**



We've produced hundreds of analogues of PYY to improve action and render the basic molecule long acting. Each has been extensively tested in animals, and chemically, and the very best chosen for further development.

### **Current Therapeutic Team Work**

GLP1 analogues established for diabetes mellitus - some weight loss.

We showed that a natural GLP1 family member, oxyntomodulin, had the additional action of increasing energy expenditure.

This produced much better weight loss\*.

Both GLP1 analogues limited by nausea. For example at first dose of 10ug (usual therapeutic dose) of Byetta 2/3rds of subject feel sick and 1/3rd vomit.

We have designed a second generation series of GLP1 analogues with enhanced insulin stimulation, improved weight loss, long action and low nausea potential.

<sup>\*</sup>Dakin et al Endocrinology 2004, 145, 2687., Wynne et al Diabetes 2005, 54, 2390., Wynne et al Int J Obesity 2005, 30, 1729., Liu et al Int J Obesity 2010, 34, 1715.

## The Academic Therapeutic Team

| NAME                | POST                 | WT/PT ON PROJECT |
|---------------------|----------------------|------------------|
| Steve Bloom         | Professor & Head     | Whole Time       |
| James Minnion       | Senior Post Doc      | Whole Time       |
| Tricia Tan          | Consultant Physician | Part Time        |
| Nima Khandan-Nia    | Finance Manager      | Part Time        |
| Beverly Hull        | Administrator        | Part Time        |
| Mohammad Ghatei     | Professor            | Part Time        |
| Ben Field           | Clinical Lecturer    | Part Time        |
| Joy Cuenco-Shillito | Senior Technician    | Whole Time       |
| Jamie Plumer        | PhD student          | Whole Time       |
| Katherine Simpson   | Clinical PhD Student | Whole Time       |
| Jenny Parker        | PhD student          | Whole Time       |
| Klara Hostomska     | PhD student          | Whole Time       |
| Tanya Stezhka       | Technician           | Whole Time       |
| Sagen Zac-Varghese  | Clinical Lecturer    | Whole Time       |
| Rachel Troke        | PhD student          | Whole Time       |
| Victoria Salem      | Clinical PhD Student | Whole Time       |



- 1970 Steve Bloom began work on gut hormones and their roles.
- 1990 onwards demonstrated major CNS effects on appetite circuits.
- Aug 2005 published academic 4 week at home blinded study of oxyntomodulin in volunteers – very good weight loss achieved.
- Devised convenient once a day analogues for wt loss, IPR protected.



- 2004 Dr John Burt and myself incorporated a new company, Thiakis.
- Exclusive licence from Imperial to develop oxyntomodulin and PYY.
- Worked with Nastech on nasal delivery licence fee was received.
- Operated for two years on this fee.
- Ongoing research in the Imperial College.
- Visited many venture capital companies unsuccessful!



- March 2006 selected TKS1225 as the development analogue.
- Aug 2006 £10M venture funding for Thiakis.
- Engaged CROs to undertake GMP synthesis, pathtox, pharmacy and phase I trial.
- No toxicity, easy to synthesise and stable.
- Saw food intake reduction.



- Dec 2008 sold to Wyeth for £100M (3 tranches).
- Wyeth bought by Pfizer a week later.
- OAP-189 is still in current development.

### Conclusion

Successful drug development in academia not necessarily cheaper

Spot gaps or novel solutions

Drive to succeed can be strong

May have less distractions

Maybe intellectual atmosphere increases success

Grant environment now helpful but still has rigidities