

MICRORHEOLOGY FOR SOFT MATERIALS

RHEOLASER

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology

MULTIPLE LIGHT SCATTERING

Backscattering intensity

STABILITY ANALYSIS

TURBISCAN RANGE

MS-DWS Interfering Backscattering waves

MICRORHEOLOGY

RHEOLASER & HORUS

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology

End use properties measurements

Shelf life, demulsification, flotation...

Drying, Open time, hardness, tablet swelling, crystalline state transition ...

Recovery, Gelation, Stiffness, Adhesion, Drug delivery....

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology

- 1. Soft materials
- 2. What is Microrheology?
- 3. Rheolaser: The instrument
- 4. Application examples

Why Rheology is important?

⇒ Because it allows to characterise end use properties like:

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology

Characteristics

□ Formulation in 1980's ⇒Surfactants

Goal: ⇒ Good dispersion

□ Formulation : Today ⇒ Surfactants + polymers

Gel like systems

Fluid like systems

Goal:

⇒ End use properties management / visco-elastic control

Decrease of the fat contents in food industry Improvement of spreadability of creams ... Environmental / health issues Better properties for drilling fluids

Properties

Most of the soft materials are visco-elastic (non newtonian)

→ Visco-elastic behavior depends on time scale observation

Properties

How to measure visco-elasticity?

⇒Oscillation analysis : Rheometer

Relation Stress / Strain depends on the visco-elastic properties

Rheolaser presentation – Secrets of Formulation III

Stability

Rheology

Oscillation analysis

⇒Experiments are complex to perform:

- Find the right geometry
- Sampling is critical : volume, evaporation, drying...
- Risk of sample denaturation
- Intrusive measurement => no evolution (Rheolgy versus ageing time)

- 1. Soft materials
- 2. What is Microrheology?
- 3. Rheolaser: The instrument
- 4. Application examples

⇒ Thanks to Brownian motion the particle feels the viscoelastic structure:

Rheolaser presentation – Secrets of Formulation III

Stability

- 1. Soft materials
- 2. What is Microrheology?
- 3. Rheolaser
- 4. Application examples

Experimental set up

⇒MS-DWS principle of measurement

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology

MS-DWS

⇒Measurement of particles mobility in opaque media

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology

MS-DWS

⇒Particle Mean Square Displacement (MSD)

Particle Mean Square Displacement

Mean Square Displacement

Particle Mean Square Displacement

Soft material properties affect the MSD of the particles Purely Viscous Particle is free to move

DWS measures displacement of many particle

Stability

DATA ACQUISITION :

Particle Mean Square Displacement (MSD) Case 3 : Visco-elastic product

C Formulaction 2009

DWS measures displacement of many particle

Stability

MEAN SQUARE DISPLACEMENT

⇒ MSD is the viscoelastic signature

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology

⇒3 parameters to monitor end use properties

- Solid/Liquid balance SLB : firmness, texture, shape stability, etc...
- Elasticity Index EI : gelation, mesh size, cross-linking, etc...
- Macroscopic Viscosity Index MVI : flowability, stability, thickening power, etc...

⇒ FOR EASY SAMPLES COMPARISON

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology

DATA TREATMENT

⇒ Kinetic analysis

SPECIFICATIONS

A unique tool to measure viscoelastic properties

- Easily : 1 tube (4-20 ml) / 1 click
- 6 measuring positions
- Viscoelastic analysis
 - ⇒ Non contact
 - ⇒ No denaturation
 - ⇒ No stress
- Simple parameters vs aging time
 - ⇒ Elasticity Index
 - ⇒Solid-Liquid balance
 - ⇒ Macroscopic Viscosity Index

time

- 1. Soft materials
- 2. What is Micro-Rheology?
- 3. Rheolaser: The instrument
- 4. Application examples

R6+

⇒2 gelatins were prepared, using 2 grades of gelatin
 ✓Gelatin A (LOW level of gel)
 ✓Gelatin B (HIGH level of gel)

⇒Gelation process:

✓ Products are first heated \rightarrow homogenous liquid

(gelatin and water + introduction of TiO_2 in order to have scatterers)

 \checkmark Sample is then cooled down \rightarrow solidification

(liquid warm sample is introduced in RheoLaser, following the gelation process)

1) GELATION PROCESS Study of 2 gelatins

- At short time : liquid behavior
- At longer time: Solid behavior => Gel

Polymer network

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology

1) GELATION PROCESS Study of 2 gelatins

 \Rightarrow Gelatin B forms faster than A (at SLB = 0,5)

- Gel time B = 13 min
- Gel time A = 33 min

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology

Computation of Network Size

Rheolaser presentation – Secrets of Formulation III

Stability

2) DRUG DELIVERY SYSTEMS Silica gel versus pH

R6+

No particles added

Experiment: Silica gel rheological behavior versus pH

- Gel at acid pH (Stomach pH = 2 3.5)
- Degradation at basic pH (Duodenum pH > 7)

Rheolaser presentation – Secrets of Formulation III

Formulaction Smart scientific analusis

No particles added

⇒ Elasticity index monitors gelation and gel destruction versus aging time

I work on emulsions, I want to produce low fat emulsions, which **kind of** polymer and which concentration can I choose to keep similar end-use properties?

3) EMULSION AND POLYMER Polymer effect

I work on emulsions, I want to produce low fat emulsions, which **kind of** polymer and which concentration can I choose to keep similar end-use properties?

Rheolaser presentation – Secrets of Formulation III

Microrheology

3) EMULSION AND POLYMER Polymer effect

Adding polymer – particularly xanthan and guar gums - to replace oil in emulsions enables to save money in the components cost

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology

4) STABILITY Study of delayed creaming : sample description

Applications:

⇒ Analyse the stability properties of emulsions stabilized with a polymer
 ⇒ Analyse the microstructure evolution

⇒ Application field : cosmetic emulsions, flavoured emulsions, food...

Experiment:

⇒ analysis of emulsions : stabilised with xanthan at different concentrations

Oil in water emulsion : 20% vegetable oil, 2% tween 20, 1% NaCl + xanthan (0.12%; 0.15%; 0.25%; 0.40%)

Data:

⇒ Monitoring of the Macroscopic Viscosity Index versus ageing time

 \Rightarrow MSD curves evolve versus time \rightarrow return to the left = signature of destabilisation

Polymer concentration	0.12%	0.15%	0.25%	0.40%
Breaking time (MVI drop)	4 hours ¼	11 hours	5 days ½	42 days
Stability (macroscopic)	65 hours	168 hours	>> 40 days	>> 100 days

⇒ The more thickener is added to the sample, the longer is the stability time (time before the MVI drops)
⇒ The Rheolaser observation is faster than eye observation !

Rheolaser presentation – Secrets of Formulation III

Rheolaser compares end use properties related to visco-elasticity

- Easily : no parameters needed, no configuration of the instrument
- Results do not depend on the operator
 - ⇒ sampling in glass cell
- At rest thanks to a non contact optical measurement
- Versus aging time on the very same sample
- By monitoring the evolution of simple parameters like:
 - Elasticity Index
 - Macroscopic Viscosity Index
 - Solid-Liquid balance

Rheolaser presentation – Secrets of Formulation III

Stability

Microrheology