

Membranes for Pure Water Systems

Ewan McAdam

Cranfield UNIVERSITY

Membrane processes: Pros and cons

Basic design

Reverse osmosis

http://www.cranfield.ac.uk

Key RO process parameters

- Water flux
 - determines production rate
 - high is better
- Salt flux or passage
 - combined with water flux, determines permeate product water quality
 - low is better
- TMP
 - Determines energy demand
 - low is better; stable is essential
- Conversion
 - Proportion of feedwater recovered as permeate
 - high is better: determined to a large extent by the flux
- Rejection
 - Proportion of ions rejected: relates to inverse salt passage
 - high is better: determined to a large extent by the ratio of the flux to salt passage

Osmotic pressure, NaCl, 25°C

RO membranes

RO membranes have additional ultrathin "active" layer for added perm-selectivity to form a composite material

RO Layer 50 - 200 nm

Ultrafiltration Layer - 50 μm

Backing Cloth

80 - 100 µm

RO elements and modules

- Individual RO element can only achieve limited conversion
- Elements are linked to form a chain of 2-6 elements in an individual module (or pressure vessel):

 $Q_R = Q (1-\theta)^n$, where $\theta = \text{conversion per element and } n = no. elements$

- As water travels along the module:
 - retentate flow rate decreases
 - retentate concentration increases
 - total pressure losses on retentate side increase
- This means that:
 - scaling propensity is highest at module outlet
 - hydraulic loading is highest at module inlet
 - retentate pressure gradient is thus also greatest at inlet
 - permeate flux is lowest at the outlet
- When outlet flux gets too low, *staging* is employed

RO design: retentate staging

Se

Concentration Factor

Concentration Factor

Concentration Factor

Flux, conversion and pressure: summary

• High fluxes tend to:

- increase conversion, which
- increases concentration factor (CF)
- increases concentration of species at membrane solution interface (i.e. concentration polarisation), which
- increases osmotic pressure, and also
- promotes precipitation of sparingly soluble species, both of which
- increase the hydraulic resistance
- Also, high flows can:
 - Hydraulic overloading takes place at the front of the module, which
 - causes pore plugging.

All of which means that

.. you can only go so far:

Membrane fouling

- Suspended solids
- Colloids (turbidity)
- Organics
- Precipitation scaling
- Biological bacteria

Scale

Sparingly soluble inorganic salts, e.g.

- calcium carbonate
- calcium fluoride and phosphate
- sulphate salts of barium, strontium and caesium
- magnesium hydroxide
- active silica
- Normally builds up in the last element
- Can be identified in the last stage by:
 - increase in TMP
 - increase in salt passage
- Normally be seen in the vessels and concentrate pipework.
- Demands care when cleaning

Localised fouling

Fouling amelioration

- Suspended solids (e.g. sand) and colloids
 - Pretreat: remove by filtration
 - Colloids most effectively removed by UF
- Organics
 - Pretreat using UF or media filtration if colloidal
 - Pretreat using GAC if dissolved
- Inorganic scalants
 - Chemical dosing:
 - mineral acids
 - antiscalants
- Biological
 - Periodic/seasonal dosing with bespoke chemicals

Classical RO/NF flowsheet

Membrane integrity: oxidative damage

Normalised Permeate Conductivity

Membrane cleaning

- Fouling eventually leads to membrane damage and replacement without cleaning
- Simple replacement is not cost effective

Membrane cleaning

Guidelines for cleaning initiation, Dow

- 10-15% reduction in normalised flow
- 15% increase in normalised feed pressure
- 15% increase in pressure differential ("DP")
- 10% increase in salt passage

When/why to choose RO vs. IEX?

When/why to choose RO vs. IEX?

Comparison of (i) IEX vs. (ii) RO with IEX mixed bed polish Surface water: 50-200 m3/h; outlet quality <1 μ S cm⁻¹

- 70-80 % of cost is operational
- For IEX cost to produce water increases with TDS due to regen. chemical costs
- RO system costs (capex and opex) less sensitive to salinity increase
- At higher IEX scales, whilst chem demand increases, EOS reduce
- BEP for favourable RO/IEX is 7-8 eq m⁻³ (~400 ppm CaCO₃)
- Decision sensitivity to local chemical cost for IEX, power consumption for RO
- Selection of source water impacts economics as does reject disposal (greater impact on RO)

Summary of DOW Chemicals study, fur further information, see: http://www.dowwaterandprocess.com/support_training/literature_manuals/ix_techinfo/ix_ro.htm

CDI

- Continuous deionisation
- Combines electrodialysis with ion exchange
- Displaces classical twin bed deionisation
- Can include polishing section

Units and skids

SW configured EDI (Dow)

CDI vs twin-bed DI

Advantages

- Continuous
- Compact
- No risk of breakthrough:
- Continuous regeneration
 Reduced ionic load in waste stream

Disadvantages

More expensive

CO₂ Degas

O SCI

Development of membrane contactors

Membrane contactors for pure water IEX

 $\begin{array}{c} \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O} \longleftrightarrow \mathsf{H}_2\mathsf{CO}_3 \longleftrightarrow \mathsf{H}^+ + \mathsf{HCO}_3^{-1} \longleftrightarrow \mathsf{H}^+ + \mathsf{CO}_3^{2^-} \\ \text{Low pH waters produce > free } \mathsf{CO}_2 \\ \text{Cation IEX exchanges } \mathsf{H}^+ \end{array}$

Contactors vs. FDA for pure water IEX

J.X	5-1	Let.			
		374	i.	- 62	A REAL
TT		T	لاشري		R
-11	Carles and				5
	À	(\mathbf{p})	III ALA	田田	13
3		19		H A	8 × 8.
	THU!		572		

• 180 ppm free CO2

70% removal = 50% anion load reduction

- Footprint (FDA commonly 10 m height also)
- Mechanical energy

Summary of Liqui-Cel study, for further information, see: http://www.liqui-cel.com

System	30% HCI	NaOH Cons.	Total yearly
Configuration	Cons.	(metric ton)	regen.
	(metric ton)		(approx.)
Without CO2 removal	1.416	0.516	£63,240
With CO2 removal (FDA)	1.070	0.372	£46,649
With CO2 Removal (MC)	0.842	0.278	£35,740

Q = 110 m3/h flow

www.soci.org