

Design Specification

Rob Terrell

Design specification

Aim is to install a plant which is:

- Fit for purpose, i.e.
 - produces enough water
 - of the required quality
 - all the time
 - at minimum cost
 - reliably
 - for the lifetime of the ion exchange resin
- On budget
- On time

Pitfalls of design specification

- If you don't specify the plant, you will get what the OEM thinks you want...
 - or what they think you think you want...
- If you over-specify the plant, the OEM will not take responsibility for the future performance of the plant... but will be happy to accept your money
- Trust is good but it is of little value in negotiating contracts between purchaser and supplier
 - or in claiming on the plant warranty
- Aim of this module is to help you to be an intelligent purchaser rather than a designer of new ion exchange plants

The simplest design specification

The simplest design specification is to specify the output:

- "I want X m³/h of water with a conductivity of < Y μ S/cm and with a silica concentration of < Z μ g/kg from the potable water supply to my site."

The risk is that the plant will not achieve the required design:

- if the raw water quality is variable or the source changes
- if the demand quoted is an average demand which ignores variations
- if the plant is not reliable
- for more than the warranty period

Worst case

Still need to satisfy demand when:

- Maximum water demand and
- "Worst" raw water quality with
- Four year old resins with
- One stream unavailable and
- Another stream in regeneration
- Performance trials after 3 months give little indication of long-term operation
- Warranty of no value after 12 months
- Important to consider at design stage
 - Unless you want to use mobile water treatment plant...

Elements to consider at design specification

- Inputs
- Outputs
- Number of streams
- Plant configuration
- Regeneration
- Effluent neutralisation
- Control and instrumentation
- Mechanical design
- Risk and reliability
- Performance trials

Note:

Many of these issued are addressed in the following lectures.

My purpose in mentioning them at this time is simply to demonstrate why they are important.

Inputs

Raw water quality

- Source
 - Surface
 - Lake
 - River
 - Borehole
 - Desalination
- Local geology
- Variability
 - Seasonality
 - Impact of rainfall
- Quality
 - Ionic balance
 - Organic material

Condensate recovery

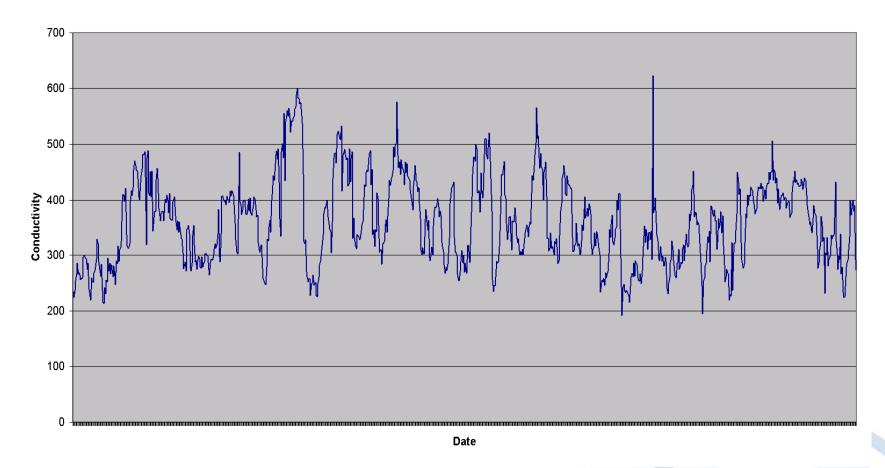
- Temperature
- Quality
 - Corrosion products
 - Iron
 - Copper
 - Contamination
 - Cooling water
 - Organics

• Water reuse/recycle

- Source(s)
 - Wastewater
 - Process condensate
- Quality
 - Ionic balance
 - Contamination
- Pretreatment
 - Is there any?
- Availability and Variability
- Control and monitoring
 - On-line

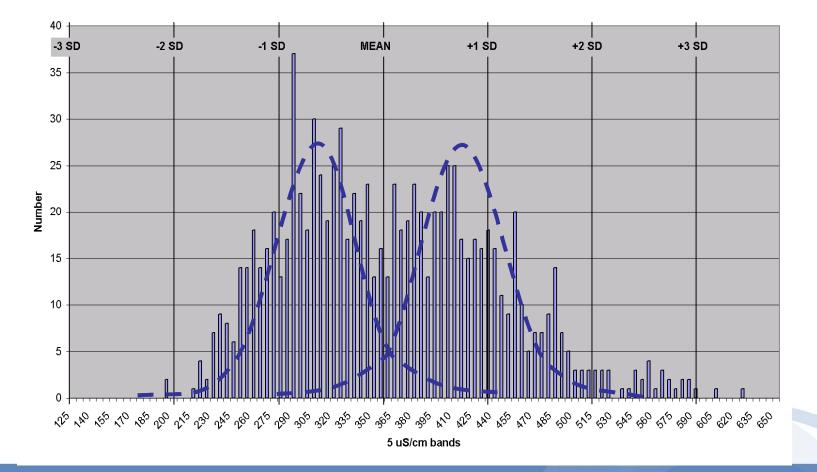
Raw water characterisation

- Provide the OEM with whatever information you have
 - Your own monitoring
 - Water Treatment Company reports
 - Plant data, e.g. for water reuse/recycling
 - Other plants in the area (generally non-contentious)
 - Use available public records
- Minimum period of data should be 12 months, but the more the better
- Be careful not to put limits on the data such as "maximum"
 - Provide all the raw data, not just a summary
 - Use terms such as "maximum recorded"
 - Qualify the values you are uncertain about
 - e.g. potable water quality
- Agree with OEM the interpretation of the data and what allowances to make for missing data or shorter monitoring periods
- Don't ignore inconvenient data it may be correct!
- Don't accept responsibility when you have no control
- Aim is to achieve an ionic balance

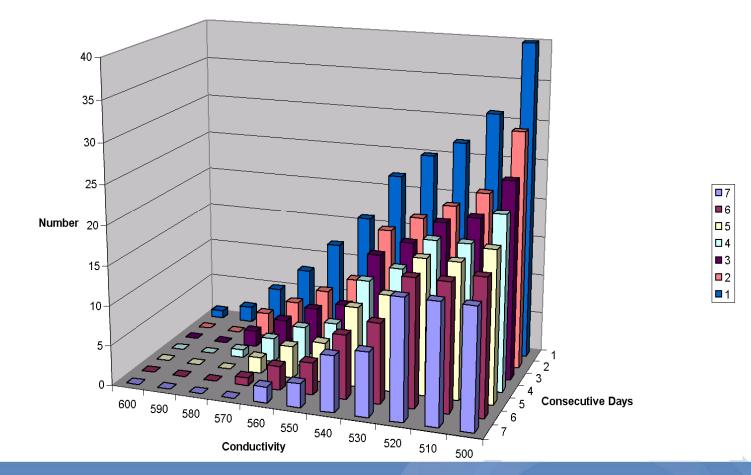


Case study

- Large replacement demineralisation plant to be built in the NW of England
 - Increasing site demand
 - Multiple users
 - Highly variable demand
 - Improved water quality required
 - Process and steam raising duties
- Potable water supply
 - Plus steam condensate
 - Plus process condensate



Case study Water quality over five year period



Case study Water quality over five years

Case study Water quality over five years Consecutive Days Above Value

Outputs

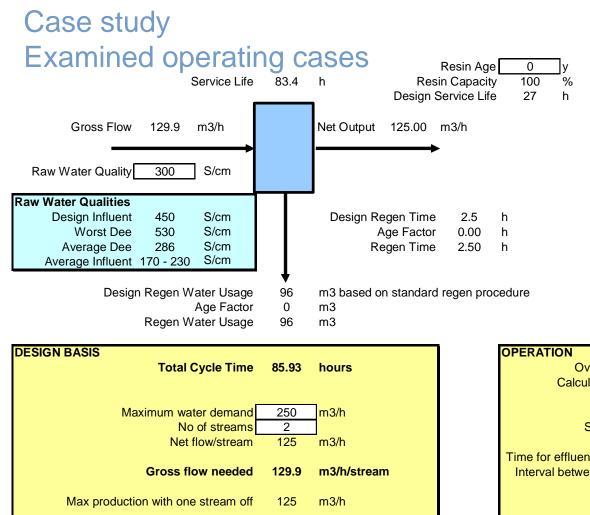
Flow

- Maximum, Minimum, Typical
- Gross capacity
- Net capacity
- Pressure
 - At point of delivery
- Quality
 - Standard parameters
 - Additional parameters
 - Industry specific standards,
 - Process specific needs,
 - Zero demand operation

- gross water production when in service
- net water production over service cycle allowing for regeneration demand)

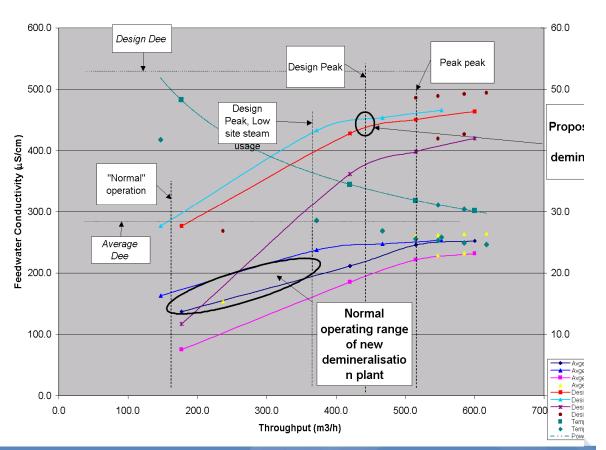
- conductivity, sodium, silica, pH
- chloride, sulphate, organics, etc
- e.g. pharmaceuticals, electronics, power,
- e.g. fine chemicals
- Recycle? Or first flush to drain?

Specify supply or demand?


- Important to characterise demand to ensure plant can meet requirements
 - Monitor usage vs time
 - Short enough time period to show peaks and troughs
 - Consider abnormal conditions
 - Plant outages
 - Start-ups
 - Unavailability
 - e.g. need to dump condensate due to contamination
- May be simple for small plant with single duty, e.g. steam raising
- More critical for large, multi-plant site

Number of streams

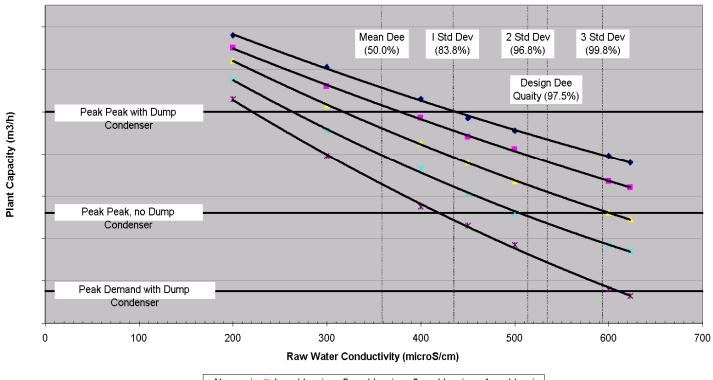
- There is a trade-off between the number of streams and installed storage
- Factors for consideration include:
 - Variability of raw water (short service runs)
 - Variability of demand
 - Cost of additional streams Vs storage tank
 - Available space
 - Effluent neutralisation capacity
 - Stream outage for vessel inspection, resin change
 - Consideration of likely failure modes and repair times
 - Control system? Regeneration equipment?



OPERATION		
Overall net demand	250	m3/h
Calculated Service Life	83.4	h
Cycle Time	85.9	h
Streams available	2	
Time for effluent neut. & dischge	3	h
Interval between regenerations	43.0	h

Case study Developed design basis

Complex operation with many "consumers" on the site


- Demand pattern highly variable
- Variable condensate returns
- Needed to develop "supply management" model
 - Variable feedwater quality
 - Ageing ion exchange resin

NEW DEMIN DESIGN BASIS

Case study Resin life

Potential Net Capacity Based on Gross Flowrate ofXXXm3/h and 10%/yr loss in anion resin capacity

◆ New resin ■ 1 yr old resin ▲ 2 yr old resin × 3 yr old resin × 4 yr old resin

Plant configuration - 1

- It is tempting to leave this to the "experts"
- But it is always wise to have your own view of what the plant will look like
 - Use the IEX2012 training notes to help you...
 - Speak to the Ion Exchange manufacturer
- What have you had before and what were its limitations?
- What do your neighbours have?
- Has the raw water quality changed?
- Have a preliminary discussion with potential suppliers to understand the options

Plant configuration - 2

- Is a "standard" Cation + Anion configuration good enough?
 - Or would you benefit from using a more sophisticated design
 - WAC? WBA? Stratified Bed?
 - Would the operational benefits override the increased complexity
- Is it a known Fouling water with high / seasonal concentrations of natural organics?
 - Do you need a pretreatment stage to protect the resin?
 - Have you good or bad experience with different resin types?
- Co-flow regeneration or Counter-flow regeneration?

Plant configuration - 3

- Do you need a Degasser?
 - Will it pay for itself?
 - Consider both Capex and Opex
 - Do you have room?
- Do you need a Mixed Bed Polisher to achieve the required quality
 - Or would a polishing cation unit do the job?
- If it is a large capacity plant, would you benefit from separating cation and anion pairs?
 - How would you manage effluent neutralisation?

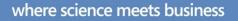
Regeneration - equipment

- How many sets of regeneration equipment?
 - Cost Vs reliability
 - Consider consequences of failure / delays
 - e.g. double regenerations, brine wash
- Day tanks
 - Dilution
 - Level controls
 - Interlocks
- Ejectors Vs injection pumps
 - Accuracy
 - Reliability
 - Safety

Regeneration – control

Most new plants have automatic regeneration, but can choose:

- Fully automatic regeneration, including initiation
- Fully automatic regeneration with manual initiation
- Automatic regeneration with hold points, e.g. after rinse
- Automatic with Manual step-through capability
- Simultaneous Vs Consecutive
- When do you want to initiate regeneration?
 - Time?
 - Throughput?
 - Quality?
 - Throughput with Quality override?
 - Manually?



Regeneration – control (2)

Regeneration may also need interlocks

- Other stream(s) being regenerated
- Regenerant Day Tank levels
- Treated Water tank / Regenerant Water tank
- Effluent Neutralisation tank
- Facility to adjust regeneration sequence
 - Backwash times and flowrate
 - Regenerant injection times
 - Regenerant displacement times
 - Rinse times
 - Regeneration levels
 - Quality set points

Regeneration – regenerants - acid

Sulphuric

- Cheaper
- Poor at removing iron
- Longer, more complex regeneration
- Risk of calcium sulphate precipitation
- More concentrated (96%)
- Smaller storage tank or less frequent deliveries

Quality generally consistent

- Hydrochloric
 - More expensive
 - Good at iron removal
 - Simpler, quicker regeneration
 - No risk of precipitation
 - Less concentrated (36%, 28%)
 - Larger storage tank or more frequent deliveries
 - > 30% HCl fumes may require scrubber
 - MUST be High Grade acid

Note: Nitric acid is not used as it is an oxidising acid and will destroy the resin

Regeneration – regenerants - alkali

Caustic

- Generally 45 to 47% strength, can get lower strength
 - If high strength Tank may require heating to prevent freezing
- Quality generally good,
 - but beware iron, mercury, chloride
 - depends on source and manufacturing process

Regeneration – additional facilities

Do you need additional facilities? e.g.

- Caustic brine washing facility to remove organic contamination from anion resin?
 - Brine tank
 - Caustic injection
 - Dwell time
- Cation resin cleaning facility
 - Hydrochloric acid injection or sodium dithionite
 - Dwell time
- Double regeneration facility
 - Repeat acid and caustic injection stages without having to complete rinse after first regeneration
- Chlorine removal with SMBS injection

Effluent neutralisation

Local Vs Central facility

Pits Vs Tanks

- Materials of construction?
- Lining?

•How many pits/tanks do you need?

•How big?

- 1 or 2 regenerations?
- Mixed Bed regeneration?
- Caustic brine discharge?

•Local acid/caustic tanks?

•Mixing?

- Jet mixers?
- Circulating pumps?

Sizing of acid/caustic pumps

- Trimming pumps?

Monitoring and control

- pH measurement
- Control algorithm
- Links to DCS/SCADA system

Discharge control

Interlocks

Control and instrumentation - 1

Controller

- PLC? preferred supplier
 - Mimic screen vs text screen
- DCS? preferred supplier
- SCADA?
- Links to existing plant systems

Data storage

- How much? How long for?

Control facilities

- Specify what you want
 - Step through regeneration capability
 - Copy of control program
 - Facility to modify program, e.g. to fine tune regeneration sequence
 - Interrogation / fault tracing
 - Interlocks with plant operation

Control and instrumentation - 2

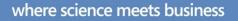
Instrumentation

- Sodium
- Silica

?

- Conductivity
- _
- Location of instruments
 - Raw water?
 - In bed vs outlet?
 - After cation unit?
 - After anion unit?
 - After mixed bed polisher?
 - Common outlet?

- preferred supplier?
- temperature compensated?
- data storage?
- multiple instruments / voting system?



Mechanical design - 1

Vessels

- Where is your plant located?
 - Footprint
 - Indoors vs. outdoors?
 - Weather protection
 - · Containerised pre-plumbed and pre-wired, tested off-site
- Materials of construction
 - FRP? Lined carbon steel?
 - Lining material?
- Design standards
 - Where will it be constructed?
 - Quality control
- Access
 - Manways? Walkways?
- Sight glasses?

Mechanical design - 2

Distributors

- Laterals Vs nozzle plates
- Materials of construction
 - Stainless steel?
 - Plastic?
 - Lining?
- Screw fittings or bayonet fittings?
- Internal supports?
- Valves
 - Preferred supplier?
 - Local indication?

Mechanical design - 3

- Additional features
 - Resin traps
 - Sample points
 - Pressure gauges
 - ?

- Demineralisation plants are often the weakest link on a production facility
 - If the demineralisation plant fails, production stops
- Important to critically examine the way in which the plant can fail and try to eliminate possible events at the design specification stage.
- Recommend to conduct a full Hazard and Operability Study starting at the design stage
 - Make sure you involve people who understand the importance of the plant

Topics for consideration include:

- Has the risk to production been assessed?
 - How much would it cost the business if the demineralisation plant was out of action?
- Number of streams vs. storage
 - Storage gives you a guaranteed shut-down period assuming you keep it full
 - But if the storage tank is contaminated, how do you recover?
 - Additional streams give more purification capacity but only if they are available
 - But if the common regeneration system fails, you can't produce any water
- Number of neutralisation tanks
 - However many streams you have, if you can't discharge the effluent you can't produce any water!

- Common mode failures
 - Are there any single items which, if they failed, would prevent the plant from operating?
 - PLC controller?
 - Valves?
 - Vessels? both ion exchange and regenerant
- Time for repair
 - If a failure did occur, how long would the plant be out of action?
- Technical service contract
 - Do you have the necessary expertise to assess the performance of the plant or do you need a contract with the OEM?
- Maintenance contract
 - Can you do all the maintenance yourselves or do you need a contract in place with the OEM?

Resin change strategy

- How long will your resin last before it needs replacing?
- How will you know when to replace it?
- What is the lead time on the availability of resin for your plant?
- Spare charges / storage
 - Do you need to keep some spare resin on site (YES!)
 - How should it be stored so that it does not deteriorate?

Mobile facility

- If all else fails, could you bring a mobile demineralisation facility on site?
- How many trailers would you need?
- Where would you park them?
- Do you have the necessary pipework connections?
- Do you have the required power available?
- Have you negotiated a supply contract with them?

Acceptance trials

- Need to plan your acceptance trials early
- Define what you need from the plant and ensure it is included in the Design Specification
 - What?
 - When?
 - By whom?
- No problems may be apparent in the first few months, but can you predict the future performance as the resin ages or fouls?

Conclusions

 A bit of thought early in the Design Process can save a lot of problems later on <u>Check List</u> Maximum demand "Worst" raw water quality Four year old resins One stream unavailable Another stream in regeneration

- Make sure you know what you want and discuss the options with your OEM(s) and Resin Suppliers
- Don't specify what you don't know you will become responsible for it
- Be prepared to ask intelligent questions
- Don't cut corners!
- If your OEM is reluctant to talk to you about the detail, then find another OEM!
- Remember that cheap and good is cheap, but cheap and nasty is just nasty.
- You can ask for a plant which will produce "X m³/h of water with a conductivity of < Y μS/cm and with a silica concentration of < Z μg/kg from the potable water supply to my site."
 - or you can ask for a plant which meets your needs...

And finally

"You can't always get what you want...

But if you try sometimes well you just might find

You get what you need"

- Rolling Stones

www.soci.org

