
     1 

 

Oilfield Fluids: 

Tales of Mud and Worms 
 

Geoffrey Maitland  

Department of Chemical Engineering 

Rideal Lecture           
Wednesday 28th March 2012 



Collaborators 

Schlumberger:   Louise Bailey, Isabelle Couillet,   

    Trevor Hughes 

Imperial College:   Edo Boek, John Crawshaw 

Utrecht University:  Henk Lekkerkerker, Annemieke ten Brinke, 

    Marcel Vogel, Dzina Kleshchanok 

Strasbourg ICS, CNRS Francoise Candau, Jean Candau 

Twente University:   Wim Briels, Johan Padding (Eindhoven) 

Bristol University:   Terence Cosgrove, Vania Croce 

     Cecile Dreiss (KCL) 
2 



Lecture Outline 

  

• Design of Fluids and Materials 

• Advanced Formulation and (More) Systematic Design of Fluids 

 

• The Worm’s Tale 

• Smarter Fracturing Fluids 

 

• The Potter’s Tale 

• Clays for Drilling Fluids – enhancing performance 

 

• Some Conclusions 
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From Understanding to Designing Fluids 
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Composition – molecules 
and molecular assemblies 

Forces Bulk Properties 

Structure 
-molecular, nano, micro 
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From Understanding to Designing Fluids 
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Composition – molecules 
and molecular assemblies 

Forces Bulk Properties 

Structure 
-molecular, nano, micro 

Process 

Cost Material availability 

Market acceptability 

Environmental Compliance 

Which 
Components? 
How much of 
each? 
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From Empirical Formulation to Systematic 

Fluid/Materials Design  

Editorial: 

 

G.C. Maitland 

Transforming 'formulation':  

systematic soft materials design 

Soft Matter, 2005, 1(2), 93 - 94 



Systematic Fluid Formulation 

   

Experiment Simulation 

Theory 

Macroscopic 

Molecular 

Mesoscopic 

k, lp, bT… 
* 

1. Understand 
mechanisms  

2. Design 
new/improved 
fluids/materials 

Cp, G, Sol, h(T,P,x…) 

Coarse Graining 

*Including High-Throughput  and 

Combinatorial Methods 

Product 



Main building blocks for (oilfield) 

functional fluids 

• Hydrocarbons 

– Aliphatics, aromatics, polar… 

• Polymers 

• Surfactants 

• Colloids 

– Mineral colloids 

– Anisotropic clays… 
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     The Worm’s Tale    
Stimulating an oil-gas reservoir 

by Hydraulic Fracturing 
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Hydraulic Fracturing 

   

Flow restricted by radial geometry 

Increased productivity through fractures 

Before 
Treatment 

After 
Treatment 
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Aqueous Solutions of Guar – the 

Standard Fracturing Fluid 

 

 

 

 

 

 

 

  

Guar: Galactomannose, M ~ 105-106 
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The Problem -  
Polymer vs Surfactant Fluids:            

Fracture Permeability   

100 

75 

50 

25 

0 

XL GUAR 

HEC 

Retained 

Permeability (%) 

Surfactant 



15 

     Problem:  
Guar Polymer Fracturing Fluids give 

<50% Theoretical Production from 

Fractures 

  

Solution: 
Shower Gels for Deep Hot Wells - 

Wormlike Surfactant Micelles at  >150oC 

Low Production…Worms to the rescue! 
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Oil-responsive Viscoelastic Surfactants 
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Micelles 
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One Source of Worms... 
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   Viscoelastic Surfactant Fracturing Fluids 

•   
• Hydrophobic 

tail 

• C22 chain 

• cis double 
bond at C13 

• Hydrophilic 
head group 

• quaternary 
ammonium 
with      2 
hydroxyethyl 
groups 

• Derived from         
rape seed oil 

• Blended with          
iso-propanol 

 

CH3–(CH2)7

C C

HH

(CH2)11–CH2–N–CH3

CH2–CH2–OH

CH2–CH2–OH

+

—
Cl

Erucyl bis (2-hydroxyethyl) methyl ammonium chloride 

EHAC 
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Typical Lengthscales 

S.R. Raghavan and E.W. Kaler 

Univ of Delaware 



  

   

Bulk Properties 

Simulation 

Theory 
Phenomenological 

Parameters 

Simulation 

Theory 

Experiment 
Macroscopic 

 Molecular 

Mesoscopic 

Experiment 

Coarse 

Graining 

Type of Study 



Bulk Rheology 

 
Continuous Shear Flow 
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VES Shear Viscosity 
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• Relaxation time, tR (= 1/gc) decreases as T  
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100s-1 

50 cP 



23 

Origin of Viscoelasticity and High Viscosity 

Spherical Micelles 

Increasing salt, 

concentration 

Micelles are very long, 1-5 mm 

Since tR ~ h ~ L3 

 micelles relax slowly                    

 high viscosity 

Transient Network 
of Wormlike Micelles 

After E.W. Kaler , Univ of Delaware 



Bulk Rheology 

 
Oscillatory Shear Flow 
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Display Simple Linear 

Viscoelastic Behaviour 
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Maxwell Model for Linear 

Viscoelasticity 
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G’ = G 2 t2 G” = G  t 

       1 + 2t2       1 + 2t2 

G 
t 

Relaxation 
Time       
t = h/G 

1 

2 

G’ 

G” 

t + h dt = h dg 

     G dt       dt 

//upload.wikimedia.org/wikipedia/commons/d/db/Maxwell_diagram.svg
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Dynamic shear rheology master curve 
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 .T
R

Rheological master curves for dynamic shear for a sample at 14.4 mM active EHAC 
concentration with 400mM KCl, obtained by scaling the data generated at various 
temperatures (15,20,25,30,35 and 40C).  

I Couillet, T Hughes, G Maitland F Candau and S J Candau, Langmuir, 20, 9541-9550, 2004 
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Linear Viscoelastic Regime 
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3 wt% EHAC surfactant, 3 wt% potassium chloride solution at 40 C. 

              Data fitted to a 2 element Maxwell model.  

η* Pa s            G’ Pa            G” Pa  

Rachel Cooke and 
Malcolm Mackley, 
Cambridge University 
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Bulk Rheology of VES Fluids 
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Both types of behaviour in line with the ‘Reptation-Reaction’ model 

of Cates, later adapted to h(g) by Spenley, Cates and McLeish. 

           tr = (tR tb)
1/2 
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Macroscopic 
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Chain Constraints –           

Reptation in a Tube 

  

Chain reptates down the tube 
which is continually renewed 
as other chains move 

Repulsive interchain forces  

Entanglements - moving obstacles 

Obstacle course for a given chain 
represented by a tube   

h ~ tR ~ L3 

Reptation time tR 
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Cates-type models 
• Assume two main processes: 

– Reptation, trep 

– Chain scission-rehealing, tbr = (KL)-1 

• Slow scission limit, tbr >> trep 

– Terminal relaxation time tR = trep 

 h0 = L3c15/4 

• Fast breaking limit, tbr << trep 

 tR = (tbrtrep)
1/2                                                

Maxwell behaviour for G’, G’’ with t = tR 

 h0 ~ Lc3 

• Rouse modes at higher frequency if tRouse < tbr 

 



Effect of Headgroup on Relaxation Time 
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Screening salt: grows wormlike 

micelles 

NaCl Concentration (mM)

10 100 1000

h  (Pa.s)

10-2

100

101

104

40 mM EHAC 

77oF 

Micellar 
surface 

   
+ 

+ +  

S.R. Raghavan and E.W. Kaler, University of Delaware 
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Spherical to wormlike micelles observed by SANS 

  

Spheres 

Cylinders 
Increasing salt 

V.Croce, T. Cosgrove, G.C. Maitland, T.L. Hughes and 

G. Karlsson, Langmuir 19 8536-41 (2003) 
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SANS study of micelle growth – no salt 

Spherical micelles, R = 33.3 A 

Data by Vania Croce, University of Bristol 

V.Croce, T. Cosgrove, G.C. Maitland, T.L. Hughes and G. Karlsson, Langmuir 19 8536-41 (2003) 
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4.5 wt% EHAC…no salt 

Spherical Micelles, R ~ 33A  

Cryo-TEM by Goran Karlsson, Uppsala University                      

and Vania Croce, University of Bristol 

V.Croce, T. Cosgrove, G.C. Maitland, T.L. Hughes and G. Karlsson, Langmuir 19 8536-41 (2003) 
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Rodlike micelles, R = 21 A 

Data by Vania Croce, University of Bristol 

SANS study of micelle growth – added salt 

Low Q: 

I~Q-1 = 

rods 

High Q: R salt 

independent 

V.Croce, T. Cosgrove, G.C. Maitland, T.L. Hughes and G. Karlsson, Langmuir 19 8536-41 (2003) 
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Add 2% KCl…peak viscosity 

             Entangled Wormlike Micelles                     

Cryo-TEM by Goran Karlsson, Uppsala University                      

and Vania Croce, University of Bristol 
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Maxwell behaviour…plus Rouse internal 

modes at high frequency  

  

Data: Vania Croce, Univ of Bristol 
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6% KCl …viscosity falling...      

…branched micelles 

             Branched Wormlike Micelles                        

Cryo-TEM by Goran Karlsson, Uppsala University                       

and Vania Croce, University of Bristol 
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6% KCl - approaching Maxwell 

behaviour… 

  

Data: Vania Croce, Univ of Bristol 
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12% KCl – essentially Maxwell 

behaviour… 

  

Data: Vania Croce, Univ of Bristol 
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Probing the Microstructure 

Rheology and Light Scattering 
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Concentration Regimes 
• Dilute 

 

 

 

• Semi-Dilute 

 

 

• Concentrated 

Rg 

Hydrodynamic volume Vh = 4/3pRg
3 

R >> Rg 

V/n = M/C >>Vh 

      Concentration C=nM / V 

Volume per molecule = V/n = M/C 

R << Rg 

V/n = M/C << Vh 

C > C* 

R = Rg 

V/n = M/C = Vh 

C = C* 

Critical Overlap Concentration   

 C* = M / Vh 
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Critical Overlap Concentration c*        

versus Temperature, Salt 
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Crossover concentration C* of EHAC solutions versus KCl concentration at 
25C ( ), 40C ( ) and 50C ( ). 

 

Data:           
Isabelle Couillet 

I Couillet, T Hughes, G Maitland F Candau and S J Candau, Langmuir, 20, 9541-9550, 2004 

Note: IPA solvent 
reduces c* by 
about 30% 



54 

Correlation length from static light 

scattering 
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Variation of the correlation length  versus active EHAC concentration  
With 400mM KCl at 25C. 

 
Correlation Length  from Ornstein-Zernicke Equation: I(q)-1 = I(0)-1[1 + q22] 

I Couillet, T Hughes, G Maitland F Candau and S J Candau, Langmuir, 20, 9541-9550, 2004 

C* 
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Estimation of  = tbreak/tR    
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Data:  
Isabelle Couillet 

Normalized Cole-Cole plot for a solution of EHAC at an active 
concentration 14.4 mM with T=15C, [KCl]=400mM. The dotted 
lines are the calculated Cole-Cole plots for different values of the 
parameter  (0.1, 0.13 and 0.3).  

I Couillet, T Hughes, G Maitland F Candau and S J Candau, Langmuir, 20, 9541-9550, 2004 



Direct Determination of Esciss 

  

3.2 3.3 3.4 3.5

10
-1

10
0

10
1

 

 G
''
/G

'i
n

f

1000/T (K
-1
)


 m

in
 (

ra
d

/s
)

Semi-log variation of  G”min/G’inf ( ) and m (o) as a function of 103/T for a 

solution with an active EHAC concentration of 14.1 mM, and 400 mM KCl 
 

Esciss = 28kT 

G”
min/G’inf ~ le/<L> 

~exp[-Esciss/2kT] 

Data: Isabelle Couillet 

I Couillet, T Hughes, G Maitland F Candau and S J Candau, Langmuir, 20, 9541-9550, 2004 
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Activation Energy for Micelle Breaking 
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Arrhenius plot of the breaking time tbreak versus 103/T  
for active EHAC concentration of 14.1 mM and 400 mM KCl 

 

Ebreak = 25.5kT 

ER = 0.5(Ebreak + Erep) 

    = 0.5(Ebreak + 1.5 Esciss) 

    = 34kT 

Esciss = 28kT 
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Simulation: from Micro to Meso to Macro 

1. Micro-scale 

• Atomistic Molecular Dynamics simulation of micelles 

• Coarse-grained micelle MD 

• Output: persistence length, compressibility,      
    scission/end cap/branching energies, … 

 

2. Mesoscopic simulation of wormlike micellar VES fluids 

• Coarse-grained micelle MD 

• Output: rheology of bulk VES fluid 

 

3. Macro-scale:  fluid dynamics 

• flow in porous media: leak-off and clean up of frac fluid  

• particle laden flow: proppant transport, shear banding,… 
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MD simulation of surfactant packing  

  

Erucate (ordered) 

Same tail,  different heads: different packing behaviour 

EHAC (less ordered) 

Erucate EHAC 
 Si,jsi.sj/N

2 0.93 0.62 
ES Boek, A Jusufi, H Loewen and GC Maitland, J Phys Condens Matter, 14, 9413-9439, 2002 
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    Density distributions 

Penetration of water into membrane core     

- similar to cylindrical micelles     

(Watanabe & Klein, 1991) 

 ES Boek, A Jusufi, H Loewen and GC Maitland, J Phys Condens Matter, 14, 9413-9439, 2002 
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Intra-chain separations  

 

Peaks  at large r are due to fully extended chains –  

at smaller distances show tendency to “fold back”   

Sharper  C=C peaks show that first part of chain is less flexible   

ES Boek, A Jusufi, H Loewen and GC Maitland, J Phys Condens Matter, 14, 9413-9439, 2002 
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Control of Fluid Properties through 

Design of Chemical Structure 

 

Moving from Formulation towards 

Molecular Engineering 



Alternative VES Structures 

    Tune headgroup and tail interactions to increase packing 

parameter, P = Vs /la, and so stabilise wormlike phase to 

higher temperatures 

 

R  -  X  -  Y  -  COO- 
Hydrophobic  

Tail 
Spacer 

group  
Spacer 

group 
Charged 

group 
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Improving Temperature Performance 
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Data: T L Hughes et al, Schlumberger 



The major block for using new 

molecules in the oilfield: 

££££££££££££ 

Must leverage on other non-

oilfield applications 
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Tuning Properties by Blends 

(a) Surfactant Blends 
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SANS for EHAC-C18E18 mixed micelles  

vs [salt] 

  25C  

4.5wt% EHAC, 

4.0wt% C18E18 

[KCl] wt% 

6.0 
4.0 

2.0 

1.0 

0.5 

0.0 

2.0 

wt

% 

6.0 wt% EHAC 

only 

V Croce, T Cosgrove, C Dreiss, G Maitland, T Hughes and G Karlsson,          
Langmuir, 20, 7984-7990, 2004 



  

EHAC = 4.5 wt% 

C18E18 = 0 

C18E18 = 1.0% 

Low shear viscosity for EHAC-

C18E18 mixed micelles 

V Croce, T Cosgrove, C Dreiss, G Maitland, T Hughes and G Karlsson,          
Langmuir, 20, 7984-7990, 2004 



Microstructure associated with rheology 

changes in mixed worm-micelle fluids 
  

V Croce, T Cosgrove, C Dreiss, G Maitland, T Hughes and G Karlsson,          
Langmuir, 20, 7984-7990, 2004 



Tuning Properties by Blends 

(b) Polymer-Surfactant Blends 
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Polymer-surfactant mixtures 
Visco-elastic surfactant (VES) - EHAC 

Hm-polymer 

x mol% hydrophobe 

• VES/hm-polymer blend 

– visco-elastic physical gel 

– selective response to oil 

– lower concentrations of 

both polymer and 

surfactant 

blended with  



  
Hm-HPG: Mw ~ 1.8x106,   
<DP> ~ 3000,                         
C22 side groups 10 per 
chain 

R = [CEHAC]/[CEHAC + 
CHmHPG] 

Hm-Polymer:Surfactant Mixtures -   

Enhanced linear viscoelasticity 

I Couillet, T Hughes, G 

Maitland and F Candau, 

Macromolecules, 38, 5271-

5282, 2005 
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Hm-HPG:EHAC mixtures – shear 

viscosity enhancement 

  

I. Couillet, T.L. Hughes, G.C. Maitland, F. Candau 

Macromolecules, 38, 5271-5282 (2005) 



Hm-HPG:EHAC mixtures – shear viscosity 

  

Hm-HPG: Mw ~ 1.8x106,   <DP> ~ 3000, C22 side groups 
10 per chain          R = [CEHAC]/[CEHAC + CHmHPG] 

I. Couillet, T.L. Hughes, G.C. Maitland, F. Candau, Macromolecules, 38, 5271-5282 (2005) 

Shear rate = 
100 s-1 

Shear rate = 
0 s-1 



Interpenetrating network of wormlike 

micelles and hm chains of hm-HPG 
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Sticky Reptation Model for                         

hm-polymer:wormlike micelle coupling 

  

D ~ average 

mutual 

entanglement 

length 

Needs quantitative model for worm-hm polymer coupled flow 
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The Potter’s Tale 

• Or…Mud, Glorious Mud 

– Tubular conduit for fluids…out and in 

• Macro Tubes 

– Clay colloidal particles are everywhere 

– Smectite montmorillonite or Bentonite 

• Clay water-based muds 

• Low permeability filtercakes 

• Soft, swellable shales 

…compacted clay rocks 



The Industrial Driver – Drilling Fluids 

87 
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Drilling an oilwell... 

• Colloidal clay oilfield drilling fluid 

 

• Rheological behaviour critical 
– Minimize pumping energy 

– Keep cuttings suspended, even 
when pumps stop 



Gelation of mixed colloid drilling fluids on 

cessation of flow 

         Concept: Designer Gels or Dial-a-Yield Stress 

89 



Base Clay: Montmorillonite or Bentonite 
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Montmorillonite Clay Platelets - Bentonite 
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Visplex/Drillplex: Mixed Metal Hydroxide Cationic Colloid 

   

 

 

 

 

 

 

    

    hexagonal plates, aspect ratio ~10   

   plate diameter ~100nm, Mg/Al ~ 1.0 
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Edge charges are pH-dependent. 

 

VISPLEX crystals: 

positive charge due to  

electron-deficient lattice 
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Mixed metal oxide: TEM image 

500 nm 
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But...problems -  

• Loss of viscosity with salt, brines...seawater 

 

• Gel degrades at temperatures higher than 115 oC 

 

Visplex was renamed Drillplex but still these 

issues persisted. 
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Henk Lekkerkerker to the rescue... 



Flow curves for mixtures of bentonite and various 

colloidal thickeners 

Boehmite 

Gibbsite 
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Felixplex Patents 
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Gelation of mixed colloid drilling fluids on 

cessation of flow 

         Concept: Designer Gels or Dial-a-Yield Stress 

98 
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Shaplex: Objectives of Study 

 

• To determine the rheology over a wide range of 

stress/strain-rates (using oscillatory, transient and 

continuous shear) of well-characterised gelling 

suspensions of colloids of varying shape:             

rods (boehmite), laths (hectorite), plates (gibbsite) 

 

• To explore the rheological synergies in mixed-shape 

colloidal suspensions:                                                                                         

2.5% w/w laths (hectorite)                                           

+ 0.25% w/w rods (boehmite)                                                       

           or plates (gibbsite)                                                     

           or spheres (alumina-coated silica) 
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Key messages 

• General complex rheological behaviour of clay and 

clay-colloid mixtures as they transform from gels 

(elastoviscous solids) to weakly elastic shear-thinning 

liquids 

• The significant enhancements to gel rheological 

properties caused by minor (~ 1:10 w/w) additions of 

a second colloidal component of varying shape 

• Contrasts between hectorite and montmorillonite as 

the base clay 

• The contrasting effect of one particular additive (silica 

spheres) depending on charge and clay concentration  
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Tuning gel behaviour by shape and charge 

• Understand structure/performance relationships 

in mixed systems using model colloids 

Hectorite Gibbsite Boehmite 

Henk Lekkerkerker, Annemieke ten Brinke, Marcel Vogel (Utrecht), 
Louise Bailey Schlumberger 



Characteristics of Particles 
                                                       Particle 

Property   Hectorite                Gibbsite                 Boehmite           Ludox CL 

 

Shape   Lath  Plate  Rod  Sphere  

L1 [nm]   288  81  200  12 

L2 [nm]   43  81  10  12 

d   [nm]   6  6  10  12 

Density [g/cm3]  2.39  1.96  2.06  2.2 

    160  6.8  200                          1.0 

C* [g/100 cm3]  1.5  28.8  1.1  220 

pH    8.9  7.8  6.2  4.5 

Sign of face charge –  +  +  + 

Conductivity [mS/cm] 38.1   80.2   46.0   

    @ 1336 ppm           @ 1154 ppm            @ 1045 ppm 

Mobility [10-8m2/Vs] -1.2  2.8  3.9  

Zeta potential mV  -9.8                 +24.0  +44.2  +42 

 

 is the ratio of hydrodynamic volume Vh (4p (L1/2)3/3) to real particle volume 
(~L1L2d) 

C* is the ‘overlap concentration’ at which the hydrodynamic volumes swept out 
by the particle’s largest dimension start to overlap = (100 L1 L2 24d r)/4pL1

3 
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Concentration Regimes 

Dilute 

 

 

 

Semi-Dilute 

 

 

 

Concentrated 

R << L 

V/n = M/C << Vh 

C >> C* 

R = L 

V/n = M/C = Vh 

C = C* 

Critical Overlap Concentration   

 C* = Mp / Vh 

L/2 

   Hydrodynamic volume Vh = pL3/6 

R >> L 

V/n = M/C >>Vh 

      Concentration C=nMp / V 

Volume per molecule = V/n = Mp/C 

“Hydrodynamic close-packing” 

109 



Multi-technique study 

  
• Oscillatory Shear 

• Creep 

• Steady Shear 

• Controlled Stress 

• Controlled Shear Rate 

• Measurement Systems 

• 1o, 2o and 4o cone & plate 

• Micro-roughened and smooth 

• Controlled sample pre-shearing   

   preparation protocols 
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Pure Components 

 

A few remarks... 
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Hectorite – Oscillatory Shear Flow 
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Hectorite – Creep  
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Hectorite – Continuous Shear 

  
Recovered Gel C* ~ 1.5 wt% 

Controlled Shear Rate Controlled Shear Stress 

Hectorite Gel – From Cradle to Grave and Back Again 
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Hectorite – Continuous Shear 

  

Recovered Gel 
C* ~ 1.5 wt% 

Controlled Shear Rate Controlled Shear Stress 

Hectorite Gel – From Cradle to Grave and Back Again 
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Fann Flow Curves Probe only the Liquid Region 

  
    
    

Bingham  Model t = ty + hg   

Herschel Bulkley Model t = ty + Kgn  
are only the tip of the iceberg! 
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Hectorite – Continuous Shear 

  

Controlled Shear Stress – Recovered Gel 

C* ~ 1.5 wt% 
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Boehmite Rods – Continuous Shear 
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Continuous Shear – Generic Flow Curves 
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Common critical factor – yield strain 

• Consistent values of G, h, ‘ty’, gy etc from oscillatory, 
transient and continuous shear experiments 

•  gy essentially independent of concentration 

 

gy  for 

• Gibbsite plates 0.1 + 0.05      (L1 = 81nm) 

 

• Hectorite laths  0.3 + 0.05      (L1 = 200 nm) 

 

• Boehmite rods  0.45 + 0.05    (L1 = 288 nm) 

 

• Same ordering as L1 or parameter  
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Mixed Shape Dispersions 

 

Replacement of 10 wt% of the Hectorite 

(@ 2.5 wt%) by a second component 
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Mixed-shape Suspensions –       

Oscillatory Flow 

  

1E-3 0.01 0.1 1 10

0

100

200

300

400

500

600

1E-3 0.01 0.1 1 10

0

100

200

300

400

500

600
A B

 Hectorite/Boehmite G'

 Hectorite/Boehmite G"

 Hectorite/Gibbsite G'

 Hectorite/Gibbsite G"

 Hectorite

 

 

G
-m

o
d

u
lu

s
 [

P
a

]

strain

 Hectorite/Boehmite G'

 Hectorite/Boehmite G"

 Hectorite/Gibbsite G'

 Hectorite/Gibbsite G"

 Hectorite

 

 
G

-m
o

d
u

lu
s
 [

P
a

]

strain

Hectorite 2.5 wt% (1.7c*), Minor Component 0.25 wt% 

 

Boehmite  = 200 

Hectorite  = 160 

Gibbsite  = 6.8 

124 



Creep viscosity h(t)  and plateau modulus Ge 
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Controlled shear stress flow curves                       

- effect of 10 wt% minor colloid 
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Post-creep viscosities –                                  

added silica spheres and the effect of charge 
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Early-time creep behaviour near ‘ty’ 
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130 

Comparative anionic mixtures 
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Again enhancement of rheology laths + plates < spheres 



Enhancement by adding minor colloid 1:10 to 2.5 wt% Hectorite 

  

Property 

                              Colloids 

Hectorite Hectorite-

Boehmite 

Hectorite-

Gibbsite 

Hectorite-

Ludox CL 

G” 1 2 5 30 

ty 1 1 2 6 

G’y 1 1 2 20 

G’ (1Hz) 1 1.4 4 20 

Ge (peak) 1 1 - 1500 

h(t0) (Creep) 1 0.5 - 14 

ty (Creep) 1 >1.2 - 8 

h(t0) (Steady Shear) 1 3 10 20 

ty (Steady Shear) 1 1.5 4.5 6 

Yield Strain (Oscillatory) 1 0.6 0.3 0.25 

Yield Strain (Cont Shear) 1 0.5 0.2 0.06 

Relative particle concentration, np 2 1 280 

Packing ratio per hectorite lath 0.8 4.5 200 
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Mixed Colloid Conclusions 

• Complexity of hectorite and hectorite-aluminasol gel 

rheology  

• Elastoviscous solid  weakly elastic, shear-thinning liquid 

• ‘Yield Space’ rather than single Yield Stress 

• Rheological behaviour and parameters by different 

techniques consistent if uniform sample pre-

treatment used 

• Major enhancements of rheology for small additions 

of second component (~0.1cinitial w/w) 
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Mixed Colloid Conclusions 

• Enhancements depend on second colloid shape, size, charge 

and number concentration 

• G’, h (t0) and ‘tyeff’ all increase rods < platelets < spheres,  

• Enhancements for nanospheres being typically x20 and up to x500 

• Critical parameter is gy, determined by size of minor component 

• For a given shape, size and charge have a significant effect 

• Most dramatic effects are with silica, a relativel cheap and 

widely available material 

• So cost-effective rheology enhancement and tuning of gelation 

characteristics looks feasible  

• Qualitative physicochemical models can rationalise the 

observed behaviour – heteroflocculation 

              – depletion or dispersion effects 

• More microstructural flow studies and quantitative models are 

needed 
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