Hilditch Memorial Lecture: Improving Food Emulsion Functionality through Structural Design Principles UMASS

David Julian McClements Department of Food Science University of Massachusetts

Food Design: The Traditional Method

Many familiar foods are the result of hundreds or thousands of years of development and were largely created by chance, art and craft

Food Design: The "Star Trek" Method

Food Design: Making "Star Trek" a Reality

Homaru Canto Chef & TV personality (Moto Restaurant)

Harold McGee **Food Expert** (Journalist and Author)

Leroy Chiao (International Space Station Commander)

David Julian McClements Emulsion Scientist (Food Science Professor)

Eric Bonabeau

Complexity Theorist

Icosystem, Boston, MA

Mars

Icosystem, Boston, MA

NASA

3-D Printer: Printing Foods The "Star Trek" Method

Layer-by-layer printing of foods

http://www.evilmadscientist.com/ article.php/3printerpreview

https://sites.google.com/a/cor nell.edu/fahteam/home

http://www.designboom.com/weblog/cat/16/v iew/11012/amit-zoran-cornucopia-foodprinter.html

Models for Food Design: Emulsions

HomogenizationÉDesign, Pressure, PassesPhase PropertiesÉη, ρ, γ, n, εSurfactant PropertiesÉC, Γ, π, kinetics, charge

ÉEmpirical Knowledge ÉAnalytical Theory ÉComputer Simulations ÉStatistical Correlations

Droplet Characteristics ÉConcentration ÉSize distribution ÉInterfacial properties Éthickness, charge, polarity ÉInteractions ÉSpatial organization

Stability & Properties

Output **Parameters** Appearance ÉL,a,b Texture ÉG, Y, Y, Éη vs. τ 0 10 20 30 40 50 Shelf Life $\dot{E}d = f(t)$ 0.1 0.2 0.3 0.4 Flavor ÉHeadspace ÉFI vs. t

Conventional Emulsions: Designing Functionality

Particle Characteristics: ÉLipid Composition

ó Polarity ó Density ó Viscosity ÉSize Distribution ÉPhysical state

ó Solid vs. Liquid

Limited Number of Food-Grade Emulsifiers

Phospholipids

Surfactants

Polysaccharides & Proteins

Interfacial Characteristics:

ÉCharge ÉThickness ÉChemistry ÉResponsiveness

Encapsulation of Bioactives: Ingredients & Challenges

Lipids

ÉFlavors (e.g., citral, limonene) ÉUnsaturated Fats (e.g., ω-3, CLA) ÉPhytosterols & Phytostanols (e.g., Sitostanol) ÉCarotenoids (e.g., lycopene, β-carotene, zeaxanthin) ÉVitamins (e.g., A and D)

Biopolymers

ÉDietary fibers (*e.g.*, chitosan, gums) ÉPeptides (*e.g.*, ACE inhibitors, satiety) ÉProteins (*e.g.*, immunoglobulins)

Microorganisms

ÉProbiotics

ÉCalcium, Iron

Need to Understand Specific Ingredient Characteristics and

to Understand Specific Ingredient Characteristic Identify Specific Challenges

Controlled Bioavailability:

Designing Emulsions to Control Biological Fate of Bioactive Agents

Controlled & Targeted Release *"*Tunable stability/instability profiles

- Encapsulation and release of functional components in response to specific environmental triggers (pH, enzymes, I)
- Deliver bioactive components to site of action: mouth, stomach, small intestine or colon

Modulating Satiety

- "Acid stable foods
 - Even distribution of fat in stomach
- " Delay digestion

-Deliver more undigested nutrients to ileum - Generate neural & hormonal signals that enhance satiety, thereby reduce amount of food consumed

Reduced Calorie Products:

Designing Emulsions to Improve Quality and Health

Lipid droplets play multiple roles in determining the physicochemical & physiological properties of emulsion-based food products.

Filled Biopolymer Particles: Extrusion Methods

Filled Hydrogel Particle Design: Methods to Control Digestibility

Physicochemical Basis of Bioavailability Controlling Digestibility

Filled calcium alginate beads can control digestibility

Filled Biopolymer Particles Effect of Bead Size

Filled Biopolymer Particles

Effect of Bead Cross-linking

Filled Biopolymer Particles Coacervation Methods

Coacervates

Effect of Cross-linking

Filled chitosanalginate coacervates

Multilayer Emulsions: Formation using LbL Method

Applications of Multilayer Emulsions Digestibility in *In Vitro* Model

Digestion depends on multilayer properties

Comparison of Structuring Approaches for Controlling Digestion: In vivo - In vitro Comparison

(A) conventional emulsion; (B) multilayer emulsion; (C) coacervate microclusters; (D) filled hydrogel beads fabricated from corn oil, whey protein, chitosan and/or alginate.

Comparison of Hydrogel Particles

In vivo versus In vitro comparisons

Conventional	A	S	SI1	SI2	SI3
Multilayer	B				
Coacervate microcluster	C				
Filled hydrogel	D				

Initial

Stomach

Small Intestine

Comparison of Hydrogel Particles In vivo versus In vitro comparison

In vitro ó pH stat

In vivo – fatty acid marker in body

Sample	Serum	Jejunum	
A - Conventional	59 ± 12	28 ± 6	
B ó Multilayer emulsion	12 ± 3	14 ± 3	
C ó Coacervate microcluster	5.5 ± 2.4	7.0 ± 1.8	
D ó Filled hydrogel	0.9 ± 0.6	1.9 ± 0.8	

Relative concentration (%) of tridecanoic acid compared to arachidonic acid in serum and jejunum

Filled Biopolymer Particles: Phase Separation-Coacervation Methods

 Biopolymer Matrix
Oil
Droplet

Oil droplets + Casein + Pectin Matrix

Filled Biopolymer Particles:

Phase Separation-Coacervation Methods

Filled Biopolymer Particles:

Oxidative stability

Filled Biopolymer Particles: *In vitro* Digestion

Fabricating Density Matched

Filled Hydrogel Particles

Lipid Concentration (%)

Theoretical prediction of the influence of biopolymer particle composition (lipid and biopolymer concentration) on the stability to gravitational separation. Assumed densities: biopolymer = 1500 kg m⁻³; water = 1000 kg m⁻³; oil = 900 kg m⁻³.

Fabricating Density Matched Filled Hydrogel Particles

Filled Hydrogel Particles with Increasing Oil Levels Prior to Storage (A) Filled Hydrogel Particles with Increasing Oil Levels After 7 Days of Storage (B)

Unstable to sedimentation

Stable to sedimentation (Density matching)

Designing Nanoemulsion Functionality: Controlled Heteroaggregation

Designing Nanoemulsion Functionality: Controlled Heteroaggregation

9Kpa, 4 Passes

- Rheology (viscosity & oscillation)
- **Appearance Determination**
- *In Vitro* Digestion

5%

Stir for 10 min and stored over night

40%

Designing Nanoemulsion Functionality: Controlled Heteroaggregation

0% LF: 100% BLG

40% LF: 60% BLG

Viscosity Enhancement

Low fat mixture ≈ High fat single emulsion

Viscosity of Different Fat Content Mixtures (LF40%: -Lg 60%), LF and -Lg Emulsions at Shear Rate (10 s⁻¹)

Nanoemulsions

A nanoemulsion consists of two immiscible liquids (usually oil and water), with one liquid being dispersed as very small spherical droplets in the other liquid.

Characteristics:

ÉThermodynamically unstable ÉParticle Diameter (d < 100 nm) **ÉOptically Transparent** ÉIntermediate Surfactant-to-Oil ratio (≈ 1:1) ÉHigh Surface Area (30 m²/g)

Nanoemulsions: Influence of Particle Size

on Physicochemical Properties

Nanoemulsions & Bioavailability: Potential Influence of Particle Size on Biological Fate

Van Eerdenbrugh (2010). MOLECULAR PHARMACEUTICS VOL. 7, NO. 5, 185861870

> Nanoparticles may be trapped in the mucous layer, which increases their retention time.

Smaller Surface Area

Smaller particles Higher Surface Area

Nanoparticles may be digested & absorbed differently

Food Nanoemulsions:

Fabrication Methods

	High Intensity Methods	Low Intensity Methods
Principle	Break liquids into smaller parts using high intensity mechanical energy	Spontaneously form droplets due to changes in physicochemical properties of phases
Examples	Ultrasonics, HPVH, Microfluidizer	Spontaneous emulsification, phase inversion methods (PIT, PIC & EIP)

Nanoemulsions vs. Emulsions:

Influence of Droplet Size on Lipid Digestion

In vitro digestion rate (per second) decreases as surface area of lipid exposed to aqueous phase increases (for similar interfacial character)

Nanoemulsion Formation: Solvent Removal Techniques

Nanoemulsion Digestibility: Influence of Particle Size & Free Surfactant

Before

After

Competitive Adsorption & Displacement

Tween 20 Stabilized Corn oil:Hexane

Variation in the amount of free and bound surfactant present

Nanoemulsion Digestibility: Influence of Particle Size & Interfacial Structure

Interfacial structure plays an important role also

Nanoemulsion Digestibility: Influence of Particle Size & Interfacial Structure

BLG-stabilized emulsions

Conclusion:

Digestion depends on particle size, interfacial structure, and free surfactant

Biological Fate of Nanoemulsions: Carrier Lipid Digestion and Solubilization

The bioavailability of encapsulated components often depends on the digestion of a lipid carrier oil, the formation of mixed micelles, and bioactive solubilization.

Encapsulation & Release of Nutraceuticals in Nanoemulsions: β-carotene

Encapsulation & Release of Nutraceuticals in Nanoemulsions: β-carotene bioavailability

Too large to fit inside micelle

Larger Mixed Micelles (Corn Oil)

Fits in micelle

Conclusions:

 The bioaccessibility of bioactive components depends on size relative to micelles

Encapsulation & Release of Nutraceuticals in Nanoemulsions: Polymethoxyflavones (PMFs)

Hang Xiao

PMFs are a group of highly lipophilic crystalline flavoid compounds isolated from orange peel with potent anti-carcinogenic activity, but...

They are crystalline, have low water solubility and poor bioavailability

Potential for Nanoemulsions to Improve Bioavailability: Polymethoxalated Flavones

Encapsulation in Nanoemulsions: Problems with Crystallization

Total Solute Concentration

Many bioactive components have low oil and water solubility

Encapsulation in Nanoemulsions: Problems with Crystallization

Encapsulation in Nanoemulsions: Problems with Crystallization

Quercetin bioaccessibility:

- Higher in emulsions
- " Higher in soluble form

Conclusions

- **Structural design principles** can be used to create a wide variety of different emulsion-based delivery systems
- These delivery systems can be fabricated from food grade ingredients using simple processing operations.
- Delivery systems can be designed to improve functionality
 - Control Digestibility
 - Control Release
 - Modulate Satiety
 - Create Reduced Fat Products
- The economics of formulation and production of structured emulsions needs to be assessed

Delivery System Design:

Establishing Performance Criteria

ÉFabricated from food grade ingredients using economic processing operations. ÉDesigned to function over wide range of conditions in food product and human body. ÉSensory acceptance

Acknowledgements

Food Biopolymers and Colloids Research Group:

Faculty at UMass:

- **Eric Decker**
- " Hang Xiao
- " Yeonhwa Park
- " Lynne McLandsborough
- " Julie Goddard

United States Department of Agriculture

National Institute of Food and Agriculture

Food Development: Evolution *vs.* Intelligent Design

versus

Evolution: Most traditional foods evolved by small adaptations through history to become the familiar items we know today.

Intelligent Design: The modern food industry requires rapid innovation and implementation of new products – an intelligent design process should be favored.