Sustainable intensification What is it, and why is it vital?

David Lawrence

Sustainable

intensification

- Low input
- Organic
- Small farms
- Eco-friendly
- Low yield
- High cost products

- High input
- High technology
- Huge, industrial farms
- Reduced biodiversity
- High yield
- Cheaper products

Food is a net energy consumer, GHG emitter

Solar energy offset by:

- fertilizer energy
- post-harvest
- machinery & transport fuel

Nitrogen fertilizer uses:

- 1% global energy
- 4% global natural gas

Agriculture causes 10-12% GHG emissions

- CH₄ from animals, rice
- N₂O from fertlizer

Energy consumption

Soil health declining

- 24% of available land degraded by human activity
- Erosion rate ~100x replacement
 - ~500yr to create 2.5cm
- Limited understanding
 - soil biology & plant interaction
 - optimisation of nutrient uptake
- Reductions in:
 - particle sizes
 - soil carbon levels

Intensive soils losing structure

- Yield related to soil particle size
 - optimum >250µm
- Trend to smaller soil particles in intensive agriculture
- Likely loss of yield

Particle size distribution. % of mass		
	Crop	Set-aside
>2000µm	16.6	29.6
1000-2000µm	2.9	8.1
250-1000µm	26.5	27.9
53-250µm	23.7	15.9
<53µm	10.1	5.6
>250µm	45.8	65.5

Decline of UK soil carbon since 1978

Kirk & Bellamy (2010) Eur. J. Soil. Sci. 61, 401-411

90% of plants are mycorrhizal

- Major role in plant productivity ~30% N & P uptake With roots, 50% soil carbon 200km mycelia per kg Biology little explored 25% of global species
 - <1% identified</p>

Running out of available Pi

- Pi abundant globally
- Running out of concentrated sources
 - 200yrs forecast exhaustion
- Current usage:
 - inefficient
 - loses Pi to groundwater & oceans

Organic does not lower carbon footprint

Sources: Hillier *et al.* (2009) J. Ag. Sust., **7**, 107-118 USDA-NASS (2008) Survey of Organic Agriculture in US

Agriculture has major ecological impact

- Deforestation continuing in some places
- Massive ecological shift from forest
 arable or grassland
 - much of what is considered "natural" landscape is due to past agriculture

Conclusion

 No current paradigm for agriculture meet the challenge of sustainable intensification:

- high yield
- sustainable:
 - energy use
 - nutrient use
 - 🖝 water use
 - soil health
 - biodiversity

Productivity is absolutely vital

- At least 2bn more people to feed by 2050
- Shrinking area of food production per head
 - no new land
 - urban growth ongoing
 - need to preserve forests
- Risk of climate change increasing lossses

Sources: United Nations, World Population Prospects UNEP

Have to face some difficult realities, e.g.

Agriculture will still need ~70% fresh water

- plants need water for hydrogen, transport, cooling
- limited scope for changing the fundamentals
- Plants need fixed nitrogen for good yield
 - synthetic fixation uses energy
 - biological fixation reduces yield
 - recycling through manure releases GHG

Sustainable intensification requires major changes

Macro level

- consumption
- grain v. grass, "waste" for animal feed

Agricultural level

- better energy balance
- more efficient use of water, nutrients
- soil health
- Societal/environmental level
 - definition of local & global biodiversity needs
 - protocols to meet this need

Reasons to believe

Drought tolerance

- Irrigation
 - reduced waste, deliver other treatments
 - lower energy water purification
- Lower energy N fixation
 - Haber process
 - increased use of "green fertilizer"
- Increased understanding of soils
 - optimisation of Pi and N
 - optimisation of soil C

Some horticultural crops approach sustainability

- Unheated; heated by digestion of waste
- Soil-free
- On-demand:
 - water
 - nutrients
- Biological control
- CO₂ enrichment

Measuring success is vital, but tricky

Resource efficiency

- C footprint a good start
- soil health
- yield per unit water, energy, nutrient

Field to market: Keystone Alliance

- Collaborative stakeholder group
- Defining, measuring sustainability of food, fibre production
- Outcome-based metrics
- Environmental & socioeconomic impacts
- Tools to help growers

Per bushel impact of US crops improving

Figure 1.1 Index of Per Bushel Resource Impacts to Produce Corn for Grain, United States, 1980-2011

Field to Market (2012). Environmental and Socioeconomic Indicators for Measuring Outcomes of On-Farm Agricultural Production in the United States: Second Report, July 2012. Available at: www.fieldtomarket.org.

Measuring success is vital, but tricky

Resource efficiency

- C footprint a good start
- soil health
- yield per unit water, energy, nutrient
- Ecological impact

Difficulty measuring biodiversity

Is productivity possible in balanced ecosystem?

- More feasible option:
 - preserve maximum amount of diverse, balanced ecosystems
 - maximise productivity with contained impact
- Social values may oppose straight science, e.g.
 - people value the look of hill farms
 - ecologists could argue should revert to forest

Measuring success is vital, but tricky

Resource efficiency

- C footprint a good start
- soil health
- yield per unit water, energy, nutrient
- Ecological impact
- Ideal may be a simple traffic-light system
 - consumers understand & drive competition in the food chain
 - updated to reflect progress and new science

Sustainable intensification

Productivity to feed everyone a healthy diet

- requires behavioural change
- Preservation of wild ecosystems
- Reduced use, recycling of resources
 - nutrients
 - water
- Preservation of soil health
 - including carbon sink
- Balanced economics
 - profitable for growers, affordable for consumers, stable supply

